TIMKEN

Aerospace Design Guide for Precision Metric Ball and Cylindrical Roller Bearings

INTRODUCTION
INTRODUCTION 2
BASIC DESIGN CONSIDERATIONS
Bearing design
Construction selection
Size and chassis selection
Special designs13
CYLINDRICAL ROLLER BEARINGS
Basic construction types
Rollers
Cage options15
Part numbers, dimensions and load ratings table 16
BALL BEARINGS
Basic construction types
Cage options
Maximum capacity cage options24
Seals and shields24
Part numbers, dimensions and load ratings table 25
ENGINEERING DATA
Tolerances
Inner ring tolerances
Outer ring tolerances
Non-destructive testing
Materials and operating temperatures40
Radial play and contact angle
Radial play, ball bearings43
Preloading44
Bearing mounting practices
Dynamic load rating and life calculations 46
Static load ratings49
Life adjustment factors
Considerations in bearing life prediction 51
Lubrication
ULTRA-HIGH-SPEED PERFORMANCE FEATURES
Ultra-high-speed performance features54
CONVERSION CHARTS
Viscosity conversion table

TIMKEN. WHERE YOU TURN.

The world turns to Timken for innovation to move ahead of the competition. Our contributions to advancing work and living standards – through innovations surrounding friction management and power transmission – are invaluable. We have played a role in virtually all major technologies that have shaped our age, from automobile travel to artificial hearts. You'll find our products wherever you turn – on land, on sea and in space.

When customers turn to us, they are turning to a worldwide team. Because of our ability to help their products perform better, customers honor us with numerous awards each year.

Whether it is a wheel assembly for a family vehicle, bearings for a roller coaster, repair services for rail bearings or steel for an aircraft engine shaft, we supply the products and services that help keep the world turning.

FRICTION MANAGEMENT SOLUTIONS – A TOTAL SYSTEMS APPROACH

As needs change and advanced motion control systems evolve, Timken leverages its knowledge of friction management to offer a broad range of bearings, related products and integrated services to the marketplace. We supply quality products and services that extend beyond bearings to help all systems run smoothly.

We are committed to providing a wide array of friction management solutions. Customers can benefit by having Timken, a trusted name for more than 100 years, evaluate entire systems, not just individual components. This approach provides cost-effective solutions, while also helping customers to achieve specific objectives.

TECHNOLOGY THAT MOVES YOU

Today, major industries turn to Timken for our ability to influence the fundamentals of motion through the creation, transfer and control of power. We invest in people, attracting scholars, engineers and specialists from around the world. We invest in tools – computers, manufacturing equipment and state-of-the-art laboratories. We invest in the future by identifying new concepts that will help Timken and our customers make their mark for years to come. Innovation is one of our core values.

The return on our technology investment has grown exponentially. We help customers solve their immediate system issues, while developing the systems of tomorrow.

Our teams of engineers and scientists are dedicated to using everything they know about friction management and power transmission. They translate the scientific aspects of metallurgy, bearing operating characteristics, lubrication, torque, noise, heat-treatment, advanced processing concepts and application development into friction management solutions.

Because our teams are located at technology centers in North America, Europe and Asia – as well as in our manufacturing facilities and field offices on six continents - customers have access to ideas and resources that transform concepts into reality. Our technology focuses on products, materials, processes and emerging technology to create new solutions.

A BRAND YOU CAN TRUST

Timken has built a strong tradition of quality, technology and innovation. A long list of customer certifications provides solid evidence that our products have earned customer trust. As our founder, Henry Timken, said, "Don't set your name to anything you will ever have cause to be ashamed of."

From design to distribution, Timken gives customers expanded options and the security of knowing that each box contains an industry-tested product.

ABOUT THE TIMKEN COMPANY

The Timken Company is a diversified industrial manufacturer of innovative, highly engineered materials, products and power transmission systems. Timken's proprietary technologies reduce friction and enable machinery to operate more efficiently, powerfully and reliably, using less energy. With operations throughout the world, the company serves a wide range of mobile, industrial and aerospace customers.

Timken has technical centers in North America, Europe and Asia and more than 100 years of engineering experience. Recognized by the Ethisphere Institute as among the 100 most ethical companies in the world in 2010, Timken has been listed on the New York Stock Exchange since 1922.

Introduction

TIMKEN AEROSPACE SOLUTIONS

With rapidly expanding capabilities, Timken provides comprehensive life-cycle solutions and delivers unparalleled value for a growing number of aerospace power transmission systems. In addition to our global leadership position in aerospace bearings, we provide an increasing variety of products and services. These range from turbine engine components and gears to complete helicopter transmissions and services, which include part reconditioning and engine overhaul.

Customers around the world turn to Timken solutions for nearly every type of aerospace system — aircraft propulsion engines and auxiliary power units, gearboxes, helicopter transmissions, accessory subsystems, landing wheels, airframes and instrumentation. Our broad portfolio of products and services is known for consistent, critical performance and backed by stringent quality standards in the world.

We apply our advanced knowledge of friction management and power transmission to solve challenging

motion-related problems and help to improve aerospace customers' performance. With specialized

engineering and technical services, backed by significant ongoing investment in technology, we are a collaborator for design, testing and prototype development and continuing support. After more than 70 years as an aerospace innovator, Timken is well-equipped to supply the next-generation technologies needed to help keep commercial and military aircraft operating at peak performance well into the future.

PRODUCT BREADTH

Timken® Aerospace bearings are designed to meet the performance requirements of critical flight systems. Most bearings are made from vacuum-melt 52100 or VIM-VAR M-50 steel and are normally manufactured to ANSI/ABMA tolerance class 5 (ISO class 5), with high-strength machined cages. Other special materials are available for performance enhancement, and our expertise extends not only to the development and application of new materials but also to the heat-treatment processes necessary for demanding aerospace environments. A range of stainless alloy steels also is available.

While most aerospace bearings are based on standard configurations, the unique requirements of each application tend to result in a final design that incorporates some special features. Timken has the capability to manufacture bearings of all types up to 600 mm (23.62 in.) outside diameter (0.D.). Special designs can simplify mounting and improve performance. This might include features such as puller

grooves, self-aligning seats, flange mounts, double-row duplex assemblies, oil grooves, low-drag seals or ceramic rolling

> elements. We also can apply a range of special coatings and platings to help reduce friction and

wear, extend life and improve performance.

Various Timken ball bearing configurations are specially designed to handle radial, axial, moment, reversible axial or combination loads, as single units or preloaded sets. Instrument and thin-section ball bearings are designed to provide superior performance in torque-sensitive applications.

Cylindrical roller bearings are capable of handling high radial loads and a e range of application speeds through

wide range of application speeds through exceptional control of roller geometry.

Frequently supplied with integral gears on their outer rings, spherical roller bearings are the preferred choice when operating conditions include heavy loads and difficulties with housing alignment or shaft deflection. Tapered roller bearings can withstand high accelerations and decelerations, heavy loads and a variety of temperature and environmental conditions. Aircraft landing wheel bearings are the standard in main and nose wheel assemblies for private, commercial and military planes.

As a Timken customer, you receive an uncompromising standard of quality across the broadest range of bearings and related products. Timken manufactures an extensive line of tapered, spherical, cylindrical and ball bearings, as well as mounted units, ideal for virtually every aerospace application. Our core products are complemented by an ever-growing line

of friction management solutions including gears and transmissions, turbine engine components, replacement parts and overhaul services that help keep your

aircraft flying.

Gears and associated components

deliver power transmission value with a range that includes housings and associated parts such as shafts, adapters, covers, supports and retainers.

Turbine engine components from airfoils (nozzles, blades and vanes) to housings, ducts and related components help keep aircraft engines operating at peak performance levels.

Gearboxes and transmissions meet the demanding performance requirements for helicopter engine nose, main, intermediate and tail transmissions, as well as engine accessory gearboxes.

Rotorhead assemblies serve critical dynamic functions with hubs, swashplates and miscellaneous rotorhead components.

Bearing repair, based on Timken's unique capabilities, restores a wide range of types and sizes to original specifications, offering significant savings over the cost of new replacements.

Component repair leverages Timken's core manufacturing strengths to return a wide range of parts to like-new condition for gas turbine engines and drivetrains.

Engine overhaul offers unmatched value for an increasing number of major aircraft platforms as part of our comprehensive lifecycle solutions.

Engineered surfaces improve wear and fatigue resistance for bearings and other components through a variety of applied treatments and finishes.

ABOUT THIS DESIGN GUIDE

Timken offers an extensive range of bearings and accessories in both imperial and metric sizes. For your convenience, size ranges are indicated in millimeters and inches. Contact your Timken sales representative to learn more about our complete line for the special needs of your application.

USING THIS GUIDE

We are committed to providing our customers with maximum service and quality. This publication contains dimensions, tolerances and load ratings as well as an engineering section describing fitting practices for shafts and housings, internal clearances, materials and other bearing features. It can provide valuable assistance in the initial consideration of the type and characteristics of the bearing that may best suit your particular needs.

DESIGN GUIDE FEATURES

Dimensional and load rating data, within the various types and styles of bearings, is organized by size.

ISO and ANSI/ABMA, as used in this publication, refer to the International Organization for Standardization and the American National Standards Institute/American Bearing Manufacturers Association.

SPECIAL APPLICATIONS

Aerospace applications require some products made to special standards, and only original equipment manufacturers can determine if a particular bearing is suitable for use in their equipment.

MARNING

Failure to observe the following warnings could create a risk of serious injury.

Proper maintenance and handling practices are critical.
Always follow installation instructions and
maintain proper lubrication.

Every reasonable effort has been made to ensure the accuracy of the information contained in this design guide, but no liability is accepted for errors, omissions or for any other reason.

NOTE

Product performance is affected by many factors beyond the control of Timken. Therefore, you must validate the suitability and feasibility of all designs and product selection. This guide is provided solely to give you, a customer of Timken or its parent or affiliates, analysis tools and data to assist you in your design. No warranty, expressed or implied, including any warranty of merchantability or fitness for a particular purpose, is made by Timken. Timken products and services are sold subject to a Limited Warranty. You can see your Timken representative for more information.

• • • • Introduction

SHELF LIFE AND STORAGE OF GREASE-LUBRICATED BEARINGS AND COMPONENTS

Timken guidelines for the shelf life of grease-lubricated rolling bearings, components and assemblies are set forth below. Shelf life information is based on test data and experience. Shelf life should be distinguished from lubricated bearing/ component design life as follows:

SHELF LIFE

Shelf life of the grease-lubricated bearing/component represents the period of time prior to use or installation. The shelf life is a portion of the anticipated aggregate design life. It is impossible to accurately predict design life due to variations in lubricant bleed rates, oil migration, operating conditions, installation conditions, temperature, humidity and extended storage.

The bearing shelf life is related primarily to the lubricant's ability to maintain the bearing's original manufactured radial internal clearance and freedom to rotate.

The component shelf life is related to the ability of the component to function as originally intended.

Shelf life values, available from Timken, represent a maximum limit – and assume adherence to the Timken suggested storage and handling guidelines. Deviations from Timken's storage and handling guidelines may reduce shelf life. Any specification or operating practice that defines a shorter shelf life should be used. Timken cannot anticipate the performance of the grease lubricant after the bearing or component is installed or placed in service.

TIMKEN IS NOT RESPONSIBLE FOR THE SHELF LIFE OF ANY BEARING/COMPONENT LUBRICATED BY **ANOTHER PARTY.**

STORAGE

Timken suggests the following storage guidelines for its finished products (bearings, components and assemblies, hereinafter referred to as "Products"):

- Unless directed otherwise by Timken, Products should be kept in their original packaging until they are ready to be placed into service.
- Do not remove or alter any labels or stencil markings on the packaging.
- Products should be stored in such a way that the packaging is not pierced, crushed or otherwise damaged.
- After a Product is removed from its packaging, it should be placed into service as soon as possible.

- When removing a Product that is not individually packaged from a bulk pack container, the container should be resealed immediately after the Product is removed.
- Do not use Product that has exceeded its shelf life as defined in Timken's shelf life guidelines statement.
- The storage area temperature should be maintained between 0° C (32° F) and 40° C (104° F); temperature fluctuations should be minimized.
- The relative humidity should be maintained below 60 percent.
- The storage area should be kept free from airborne contaminants such as, but not limited to: dust, dirt, harmful vapors, etc.
- The storage area should be isolated from undue vibration.
- Extreme conditions of any kind should be avoided.

Inasmuch as Timken is not familiar with a customer's particular storage conditions, these guidelines are strongly suggested. However, the customer may very well be required by circumstance or applicable government requirements to adhere to stricter storage requirements.

Most bearing types are typically shipped protected with a corrosion-preventive compound that is not a lubricant. Such bearings may be used in oil-lubricated applications without removal of the corrosion-preventive compound. When using some specialized grease lubrication, it is advisable to remove the corrosion-preventive compound before packing the bearings with suitable grease.

Some bearing types in this design guide are pre-packed with general purpose grease suitable for their normal application. Frequent replenishment of the grease may be necessary for optimum performance. Care must be exercised in lubricant selection, however, since different lubricants are often incompatible.

When specified by the customer, other bearings may be ordered pre-lubricated with suitable greases and oils.

Upon receipt of a bearing shipment, ensure that the bearings are not removed from their packaging until they are ready for mounting so that they do not become corroded or contaminated. Bearings should be stored in an appropriate atmosphere in order that they remain protected for the intended period.

Any questions concerning shelf life or storage should be directed to your local sales office.

BEARING DESIGN

FROM APPLICATION TO SPECIFICATION – A LOGICAL APPROACH

This design guide is prepared to help you choose the optimum bearing for your specific application. Too often, bearings are selected without a thorough analysis, resulting in poor performance, unexpected problems and reduced life. To help you avoid these and other issues, Timken developed a four-step procedure to summarize key concepts that should be considered when developing an aerospace bearing specification. The interrelationship of these concepts covers the entire field of bearing engineering.

Although this design guide answers many questions, others may require the assistance of an experienced Timken engineer. Furthermore, in unusual or state-of-the-art applications, the solution may require a carefully monitored test program. Bearing chassis sizes and load ratings listed in this guide can be modified and optimized to meet specific requirements including special features.

STEP 1: DETERMINE PERFORMANCE REQUIREMENTS

Simply stated, two basic performance requirements control everything that a bearing must do within an application. Every bearing must:

- 1) Provide a defined level of rotational freedom.
- 2) Provide a defined level of position control (from basic free movement to high-frequency movement or vibration).

It is important to determine the actual limits of these requirements since bearing life is simply how long the bearing is statistically expected to operate within these limits. Of course, limits vary significantly from one type of application to another, so detailed analysis must be established.

STEP 2: DETERMINE APPLICATION PARAMETERS

A number of application parameters govern performance. Although only a portion may be significant in any given application, meticulous review of each will help ensure that nothing important has been overlooked.

Performance application parameters can be categorized four ways:

- 1) Physical.
- 2) Operational.
- 3) Environmental.
- 4) Economic.

In any given application, many of these are fixed while others are variable and can be modified or controlled when necessary. Final selection is always involves a balance of these parameters.

Physical Parameters

These include:

- 1) Space available for the bearing or bearing systems.
- 2) Allowable weight for the bearing or bearing systems.
- The shape, material and tolerance control of the housing and shaft.
- 4) The features integrated into the bearing to simplify mounting structures.
- 5) Operational temperature.

The more space and weight allowed for the bearing system, the more sophisticated and reliable it will be. However, added weight may be an expensive luxury unless absolutely necessary, as would be true of supplementary lubrication systems for high-speed turbine and accessory bearings. The housing and shaft design has a significant impact on ultimate bearing performance. The shaft should be a solid, perfectly round cylinder made from material absolutely compatible with the thermal coefficient of expansion of the bearing. The housing cross section should be uniform, giving full hoop support for the bearing. Both housing and shaft should have precision-machined shoulders or seats to ensure perfect alignment.

Final design selection is made by choosing the best set of features to meet the physical parameters of the application. Timken engineers can provide design assistance in choosing the best design features for the application.

Operational Parameters

- Speed governs the number of load cycles the bearing experiences and is, therefore, related to life. Speed, in terms of a relative guide parameter called "dN" (inner ring bore in mm x RPM), also influences many other aspects of bearing operation. This includes lubricant flow patterns and film thickness, centrifugal rolling element loads, skidding, excessive heat generation and lubrication method.
- Loads break down in three directions: radial, axial and moment. These, in turn, can be applied as constant, variable, vibratory or impact loading. The combination must be carefully considered for optimum bearing life and performance.

• • • • • • Basic Design Considerations

Environmental Parameters

The environment is a fixed condition of the end product. However, the decision to protect or expose the bearing to the environment is a design option. Temperature, either ambient or internally generated, is a major consideration. The nature of the surrounding media, liquid or gas (for both materials and lubrication), may establish the need for seals, special corrosion protection or supplemental lubrication. Any special environments such as magnetic fields or radiation also should be considered for their design impact.

Economic Parameters

Total system cost should be carefully weighed. This is not just the cost of the bearing, but the total cost of bearing, mounting and replacement. Timken engineers can work with you on minimizing total system cost.

STEP 3: EVALUATE POTENTIAL DAMAGE MODES

Reduced design life in a particular application occurs when there is sufficient performance degradation so that the bearing no longer meets the original requirements. There are fifteen commonly identified primary damage modes:

- 1) Wear foreign material.
- 2) Etching corrosion.
- 3) Inadequate lubrication.
- 4) Fatigue spalling.
- 5) Excessive preload or overload.
- 6) Excessive endplay.
- 7) Misalignment and inaccurate machining of seats and shoulders.
- 8) Handling and installation damage.
- 9) Damaged bearing cages or retainers.
- 10) High spots and fitting practices.
- 11) Improper fit in housings or shafts.
- 12) Brinell and impact damage.
- 13) False brinelling.
- 14) Burns from electric current.
- 15) Cam fracture.

A complete discussion of these failure modes is beyond the scope of this design guide. It is important to note that only classic fatigue and true load brinell have specific formulas that permit calculation of life or numerical limit. All of the others are experience factors that are a function of the specific application, where temperatures, lubrication, overload or contamination are contributors to decreased life.

STEP 4: DETERMINE BEARING DESIGN

Only after careful consideration of the foregoing should a specific bearing selection be made. In many cases, it is possible to select a size and type from this guide without defining restrictions on other characteristics. In more critical applications, specific design decisions and/or controls can be developed based on:

- 1) Lubrication type, method and/or quantity.
- 2) Use of shields and/or seals.
- 3) Cage configurations, material and clearances.
- 4) Basic tolerance and modifications.
- 5) Radial play or contact angle.
- 6) Preload.
- 7) Material variation.
- 8) Contact area geometry modifications (curvature, crowning, etc.).
- 9) Special ball or roller complements.
- 10) Complete special and/or integral designs.

If the analysis has been completed properly, the final design should function as intended. Reliability and life expectancy will be optimized with the best chance of avoiding damage. Timken Aerospace engineers are ready to provide assistance as necessary to achieve this goal.

CONSTRUCTION SELECTION

CONSTRUCTION SELECTOR CHART

Evaluation of the design criteria contained in the following chart will help you choose the optimum design construction. While no individual construction can satisfy all possible service functions, proper selection makes it possible to meet the most critical functions or conditions in each application. The chart rates each construction on a relative basis.

	-			
Deep-Groove HK Ball Bearing	Angular Contact HA/HJ Ball Bearing	Fractured Outer HD Ball Bearing	Two-Piece Inner HT Ball Bearing	Cylindrical Roller Radial Bearing
S	М	E	S	E
S	E	S ⁽¹⁾	Е	М
S	N/A	S ⁽¹⁾	Е	N/A
S	E	E	S	М
S	N/A	E	S	N/A
S	N/A	M ⁽¹⁾	S	N/A
S	E	S ⁽¹⁾	Е	Е
N/A	E	E	Е	Е
Е	S	E	S	S
Е	M	E	S	М
М	М	М	М	Е
	Ball Bearing S S S S S S S N/A E	Ball Bearing Ball Bearing S M S E S N/A S E S N/A S E N/A E E S E M	Ball Bearing Ball Bearing Ball Bearing S M E S E S(I) S E E S E E S N/A E S N/A M(I) S E S(I) N/A E E E S E E B E E B E E B E E B E E B E	Ball Bearing Ball Bearing Ball Bearing S M E S S E S(I) E S N/A S(I) E S E E S S N/A E S S N/A M(I) S S E S(I) E N/A E E E E S E S E S E S E S E S

CODES: E = excellent S = satisfactory M = marginal N/A = not adequate or not available

Table 1. Construction selector.

⁽¹⁾ May be used with closely restraining housing fits and face clamping.

SIZE AND CHASSIS SELECTION

Timken Aerospace ball and roller bearings are offered in five basic boundary dimension series. These series, illustrated in Fig. 1 and listed in the dimension tables, include bearings ranging in size from 10 mm (0.3937 in.) bore to 600 mm (23.6220 in.) O.D. The 000 series (ANSI/ABMA 19 series) has become increasingly popular with the aircraft industry due to its very thin cross section and reduced weight. Timken also supplies bearings in the ultra-light 1800 series.

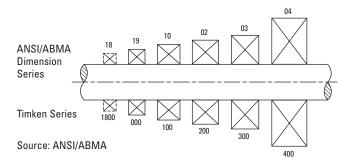
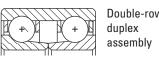



Fig. 1. ANSI/ABMA dimension series and Timken series.

SPECIAL DESIGNS

Many special designs can be made to simplify mounting and improve performance in complex engine assemblies.

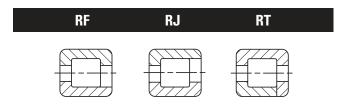
A typical design would include bearings with puller grooves, self-aligning seats, flange mounts or double-row duplex assemblies. To speed delivery and reduce cost, all specialized bearings should be designed around standard bore, O.D. width or ball/roller complements as listed in the bearing specification tables.

Double-row

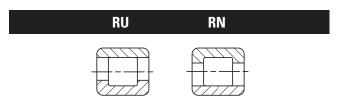
Roller bearing with integral flange mount

Roller bearing with self-aligning seat

Split-inner-ring bearing with puller groove


Fig. 2. Special designs.

CYLINDRICAL ROLLER BEARINGS


BASIC CONSTRUCTION TYPES

Aerospace roller bearings are designed to meet the needs of high-speed operations. Careful attention to roller configuration, cage design, guide flange finish and contour and material stability can help you achieve roller end wear and improve life at high speeds.

Conventionally designed roller bearings in standard 52100 or VIM-VAR M-50 steel are normally manufactured to class 5 tolerances with high-strength machined cages. Any of at least seven ring configurations may be selected, depending on the application. All types (except RAA) provide precision control of the roller for operation over a wide speed range with precision-ground, double-ribbed guide flanges on one ring. Generally, the guide flange diameters are ground to close tolerances to offer a riding surface for cage-to-land clearance control.

For applications requiring axial position control or limited axial capabilities in one direction, type RF is most frequently used. Under light loads, type RF is less prone to skidding. Under higher loads at higher speeds, type RJ is easier to lubricate with an oil jet onto the inner raceway. Type RT is similar, but can support a reversing or indeterminate thrust load.

These full-floating configurations allow limited axial motion during operation. Type RU is easier to lubricate under heavy loads. Type RN is less prone to slip or skid under lighter or varying loads at high speeds.

These configurations are used in integral designs where the rollers run directly on a hardened and ground shaft or housing. Nominal matching shaft and housing diameters are shown in the specification tables. Performance characteristics are similar to types RU and RN.

Single-ribbed inner and outer rings are a lower-cost version of type RF for use at low speeds or under oscillating conditions. This design generally has only guide flanges to accept some axial load in one direction (with well-lubricated guide flanges).

Fig. 3. Cylindrical roller bearing types.

ROLLERS

Rollers in all sizes over 3.5 mm (0.1378 in.) are contoured by crown blending for uniform stress distribution under load. The length is closely matched for uniform minimum clearance within the guide flanges to ensure optimum tracking at all speeds. All rollers listed in the specification tables have the preferred equal length-to-diameter ratio. These "square" rollers have superior ability to accept thrust and misalignment. Where theoretical capacity is critical and when load conditions and O.D. restrictions dictate, rollers of length-todiameter ratio greater than 1 can be supplied.

CAGE OPTIONS

Following selection of the basic bearing construction, choosing the proper cage material results in the optimum bearing for the application. With the exception of the full roller complement, all cage options are one-piece designs with precision-machined pockets, piloted on the double-ribbed ring and are non-separable from the double-ribbed ring. Rollers are usually retained through a Timken-proprietary formed-tab design, although special designs may require the use of other retention methods.

Cage Code	Material and Type	Design	Temp. Limit	Speed Limit dN 10 ⁶	Description				
F	Full roller complement, no cage	00000	Same as bearing material	0.3	Use primarily at low speeds under high radial loads. Provides the maximum possible static load capacity. Also use to reduce cost where a cage is not required.				
В	Machined brass		190° C	1.0	Use in heavily loaded transmission and accessory applications. Excellent				
	Widefillied Bruss	375° l		1.0	strength and wear performance.				
Z	AMS 4616		260° C	1.5	Similar to brass with better strength and wear-resistant. Frequently used in combination with VIM-VAR M-50 rings where temperatures exceed the				
۷	silicon-iron-bronze		500° F	1.3	177° C (350° F) limit for 52100 steel.				
Н	Machined and hardened AMS 6415 alloy steel		480° C	3.0	Silver-plated to enhance run-in, wear life and to provide continuity after lubricant loss. VIM-VAR M-50 bearings with silver-plated steel				
н	silver-plated		900° F	3.0	cages are the first choice of the turbine industry for critical performance mainshaft and powertrain bearings.				

Table 2. Cage options.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE

CYLINDRICAL ROLLER BEARING SPECIFICATIONS

To develop a complete bearing part number:

- 1) Select MATERIALS AND OPERATING TEMPERATURES prefix (see page 40).
- 2) Select CONSTRUCTION TYPE and CAGE prefixes.

Compo		RF	RJ	RU	RN	RUS	RNH	RT			
Cages		Construction Types									
Full Roller Complement	F	RFF	RJF	RUF	RNF	RUSF	RNHF	RTF			
Machined Brass	В	RFB	RJB	RUB	RNB	RUSB	RNHB	RTB			
Machined Si-Fe Bronze	Z	RFZ	RJZ	RUZ	RNZ	RUSZ	RNHZ	RTZ			
Machined Steel Silver-Plated	RFH	RJH	RUH	RNH	RUSH	RNHH	RTH				

Table 3. Cylindrical roller bearing specifications.

- 3) Select basic bearing TIMKEN SIZE CODE. (See tables on pages 17-21.)
- 4) Timken adds a dash number to cover all other features, including tolerance class and radial play.

	Examples				
	RFZ 201-103	5 RNF 109-28			
Material	52100 steel	5 = VIM-VAR M-50 steel			
Construction	RF = RF type	RN = RN type			
Cage	Z = machined Si-Fe bronze	F = full roller complement			
	201 = size 201	109 = size 109			
Size	-103 = special features detailed under "dash" 103 code	-28 = special features detailed under "dash" 28 code			

Table 4. Roller bearing part number examples.

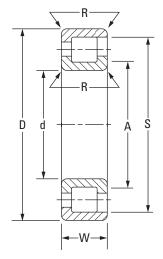


Fig. 4. Roller bearing dimensional features.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE

					Boundary Di	mensions					Load I	Ratings
Tl	d	D	W	Mounting SI	noulder Diameter	R	Nominal F	Roller Path		D-U	C,	Cor
Timken Size	Bore	Outside	Width	A	S	Dodina	Dian	neter		Roller	Dynamic	Static Radial
Code	Bore	Diameter	vviatn	Min. Shaft	Max. Housing	Radius	Inner	Outer	No.	Diameter x Length	Radial Capacity	Capacity
	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		mm in.	Newtons lbs.	Newtons lbs.
000	10 0.3937	22 0.8661	6 0.2362	12.014 0.473	19.964 0.786	0.3 0.012	12.500 0.4921	19.500 0.7677	10	3.5 x 3.5 0.1378 x 0.1378	4790 1080	3480 782
100	10 0.3937	26 1.0236	8 0.3150	12.421 0.489	23.571 0.928	0.3 0.012	13.000 0.5118	23.000 0.9055	8	5 x 5 0.1969 x 0.1969	7950 1790	5580 1250
200	10 0.3937	30 1.1811	9 0.3543	14.021 0.552	25.984 1.023	0.6 0.024	15.000 0.5906	25.000 0.9843	8	5 x 5 0.1969 x 0.1969	8100 1820	5800 1300
300	10 0.3937	35 1.3780	11 0.4331	14.453 0.569	30.556 1.203	0.6 0.024	17.000 0.6693	30.000 1.1811	8	6.5 x 6.5 0.2559 x 0.2559	12700 2860	9240 2080
001	12 0.4724	24 0.9449	6 0.2362	14.021 0.552	21.996 0.866	0.3 0.012	14.676 0.5778	21.676 0.8534	10	3.5 x 3.5 0.1378 x 0.1378	4820 1080	3590 808
101	12 0.4724	28 1.1024	8 0.3150	14.326 0.564	25.679 1.011	0.3 0.012	15.000 0.5906	25.000 0.9843	8	5 x 5 0.1969 x 0.1969	8100 1820	5800 1300
201	12 0.4724	32 1.2598	10 0.3937	15.697 0.618	28.296 1.114	0.6 0.024	16.000 0.6299	28.000 1.1024	8	6 x 6 0.2362 x 0.2362	11400 2560	8280 1860
301	12 0.4724	37 1.4567	12 0.4724	17.043 0.671	32.029 1.261	1 0.039	18.034 0.7100	32.034 1.2612	8	7 x 7 0.2756 x 0.2756	14700 3300	10800 2430
002	15 0.5906	28 1.1024	7 0.2756	17.043 0.671	25.959 1.022	0.3 0.012	18.000 0.7087	25.000 0.9843	14	3.5 x 3.5 0.1378 x 0.1378	6180 1390	5220 1170
102	15 0.5906	32 1.2598	9 0.3543	17.424 0.686	29.591 1.165	0.3 0.012	18.750 0.7382	28.750 1.1319	10	5 x 5 0.1969 x 0.1969	9750 2190	7630 1710
202	15 0.5906	35 1.3780	11 0.4331	18.542 0.730	31.471 1.239	0.6 0.024	19.000 0.7480	31.000 1.2205	10	6 x 6 0.2362 x 0.2362	13800 3090	10800 2430
302	15 0.5906	42 1.6535	13 0.5118	20.218 0.796	36.906 1.453	1 0.039	20.900 0.8228	36.900 1.4528	8	8 x 8 0.3150 x 0.3150	19100 4300	14400 3240
003	17 0.6693	30 1.1811	7 0.2756	19.025 0.749	27.991 1.102	0.3 0.012	20.000 0.7874	27.000 1.0630	14	3.5 x 3.5 0.1378 x 0.1378	6150 1380	5300 1190
103	17 0.6693	35 1.3780	10 0.3937	19.380 0.763	32.614 1.284	0.3 0.012	21.250 0.8366	31.250 1.2303	12	5 x 5 0.1969 x 0.1969	11200 2520	9380 2110
203	17 0.6693	40 1.5748	12 0.4724	20.701 0.815	36.297 1.429	0.6 0.024	22.324 0.8789	35.324 1.3907	10	6.5 x 6.5 0.2559 x 0.2559	15500 3480	12400 2780
303	17 0.6693	47 1.8504	14 0.5512	22.327 0.879	41.681 1.641	1 0.039	23.451 0.9233	41.451 1.6319	8	9 x 9 0.3543 x 0.3543	24100 5410	18500 4160
403	17 0.6693	62 2.4409	17 0.6693	24.028 0.946	54.966 2.164	1 0.039	28.500 1.1220	50.500 1.9882	8	11 x 11 0.4331 x 0.4331	34200 7680	26900 6050
004	20 0.7874	37 1.4567	9 0.3543	22.200 0.874	34.798 1.370	0.3 0.012	23.749 0.9350	33.749 1.3287	14	5 x 5 0.1969 x 0.1969	12600 2830	11200 2510
104	20 0.7874	42 1.6535	12 0.4724	23.546 0.927	38.456 1.514	0.6 0.024	24.000 0.9449	38.000 1.4961	10	7 x 7 0.2756 x 0.2756	17900 4030	14500 3260
204	20 0.7874	47 1.8504	14 0.5512	24.689 0.972	42.291 1.665	1 0.039	25.900 1.0197	41.900 1.6496	10	8 x 8 0.3150 x 0.3150	23200 5220	19100 4280
304	20 0.7874	52 2.0472	15 0.5906	25.197 0.992	46.812 1.843	1 0.039	26.000 1.0236	46.000 1.8110	8	10 x 10 0.3937 x 0.3937	29500 6630	23100 5190
404	20 0.7874	72 2.8346	19 0.7480	27.026 1.064	64.973 2.558	1 0.039	34.000 1.3386	58.000 2.2834	8	12 x 12 0.4724 x 0.4724	41000 9220	33200 7460
005	25 0.9843	42 1.6535	9 0.3543	27.178 1.070	39.827 1.568	0.3 0.012	29.017 1.1424	39.017 1.5361	16	5 x 5 0.1969 x 0.1969	13800 3100	13200 2960
105	25 0.9843	47 1.8504	12 0.4724	28.651 1.128	43.332 1.706	0.6 0.024	29.000 1.1417	43.000 1.6929	12	7 x 7 0.2756 x 0.2756	20700 4660	18100 4070
205	25 0.9843	52 2.0472	15 0.5906	29.616 1.166	47.396 1.866	1 0.039	30.482 1.2000	46.482 1.8300	12	8 x 8 0.3150 x 0.3150	26900 6040	23700 5330
305	25 0.9843	62 2.4409	17 0.6693	30.607 1.205	56.388 2.220	1 0.039	33.564 1.3214	55.564 2.1876	10	11 x 11 0.4331 x 0.4331	41200 9270	35100 7890
405	25 0.9843	80 3.1496	21 0.8268	33.096 1.303	71.907 2.831	1.5 0.059	39.500 1.5551	65.500 2.5787	10	13 x 13 0.5118 x 0.5118	57100 12800	50000 11300

 $R = \text{maximum shaft or housing fillet radius that bearing corner will clear.} \\ C_r = \text{ANSI/ABMA dynamic radial load rating (33\% RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions).} \\$

Cor = ANSI/ABMA static radial load rating.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE continued

					Boundary Di	IIICIISIUIIS					Luau i	Ratings
Timelen	d	D	W	Mounting SI	noulder Diameter	R	Nominal I	Roller Path		D-U	C,	Cor
Timken Size Code	Bore	Outside Diameter	Width	A Min. Shaft	S Max. Housing	Radius	Diar Inner	neter Outer	No.	Roller Diameter	Dynamic Radial Capacity	Static Radial Capacity
	mm	mm	mm	mm	mm	mm	mm	mm		x Length mm	Newtons	Newtons
	in. 30	in. 47	in. 9	in. 32,207	in. 44.806	in. 0.3	in. 33.749	in. 43.749		in. 5 x 5	lbs. 14900	lbs. 15100
006	1.1811	1.8504	0.3543	1.268	1.764	0.012	1.3287	1.7224	18	0.1969 x 0.1969	3350	3400
106	30	55	13	34.544	50.470	1	35.850	49.850	14	7 x 7	23200	22000
100	1.1811	2.1654	0.5118	1.360	1.987	0.039	1.4114	1.9626	ļ ···	0.2756 x 0.2756	5220	4940
206	30 1.1811	62 2.4409	16 0.6299	34.900 1.374	57.099 2.248	0.039	37.020 1.4575	57.020 2.2449	12	10 x 10 0.3937 x 0.3937	41400 9310	37800 8490
	30	72	19	35.890	66.091	1	38.651	64.651	10	13 x 13	56900	49800
306	1.1811	2.8346	0.7480	1.413	2.602	0.039	1.5217	2.5453	10	0.5118 x 0.5118	12800	11200
406	30	90	23	38.100	81.915	1.5	46.000	74.000	10	14 x 14	66400	59600
	1.1811	3.5433	0.9055	1.500	3.225	0.059	1.8110	2.9134		0.5512 x 0.5512	14900	13400
007	35 1.3780	55 2.1654	10 0.3937	38.354 1.510	51.664 2.034	0.6 0.024	39.300 1.5472	51.300 2.0197	18	6 x 6 0.2362 x 0.2362	21300 4790	22200 5000
107	35	62	14	39.624	57.379	1	40.900	56.900	14	8 x 8	30200	29200
107	1.3780	2.4409	0.5512	1.560	2.259	0.039	1.6102	2.2402	14	0.3150 x 0.3150	6790	6570
207	35	72	17	40.361	66.624	1	43.050	65.050	12	11 x 11	48100	44500
207	1.3780	2.8346	0.6693	1.589	2.623	0.039	1.6949	2.5610		0.4331 x 0.4331	10800	10000
307	35 1.3780	80 3.1496	21 0.8268	42.748 1.683	72.238 2.844	1.5 0.059	43.500 1.7126	71.500 2.8150	10	14 x 14 0.5512 x 0.5512	66100 14900	58900 13200
	35	100	25	43.104	91.923	1.5	52.500	82.500	10	15 x 15	76300	70000
407	1.3780	3.9370	0.9843	1.697	3.619	0.059	2.0669	3.2481	10	0.5906 x 0.5906	17100	15700
008	40	62	12	43.358	58.649	0.6	44.000	58.000	18	7 x 7	27700	29100
	1.5748	2.4409	0.4724	1.707	2.309	0.024	1.7323	2.2835	-	0.2756 x 0.2756	6230	6540
108	40 1.5748	68 2.6772	15 0.5906	44.577 1.755	63.424 2.497	0.039	45.000 1.7717	63.000 2.4803	14	9 x 9 0.3543 x 0.3543	38000 8540	37400 8400
	40	80	18	45.542	74.447	1	48.600	72.600		12 x 12	57100	54000
208	1.5748	3.1496	0.7087	1.793	2.931	0.039	1.9134	2.8583	12	0.4724 x 0.4724	12800	12100
308	40	90	23	48.133	81.864	1.5	49.800	81.800	10	16 x 16	85600	77900
	1.5748	3.5433	0.9055	1.895	3.223	0.059	1.9606	3.2205	"	0.6299 x 0.6299	19200	17500
408	40 1.5748	110 4.3307	27 1.0630	50.495 1.988	99.517 3.918	2 0.079	58.000 2.2835	92.000 3.6221	10	17 x 17 0.6693 x 0.6693	93100 20900	86000 19300
	45	68	1.0030	48.590	64.414	0.073	49.500	63.500		7 x 7	29700	32800
009	1.7717	2.6772	0.4724	1.913	2.536	0.024	1.9488	2.5000	20	0.2756 x 0.2756	6680	7380
109	45	75	16	49.759	70.231	1	51.450	69.450	16	9 x 9	41800	43600
100	1.7717	2.9528	0.6299	1.959	2.765	0.039	2.0256	2.7342	1	0.3543 x 0.3543	9390	9800
209	45 1.7717	85 3.3465	19 0.7480	50.419 1.985	79.578 3.133	0.039	52.650 2.0728	78.650 3.0965	12	13 x 13 0.5118 x 0.5118	66700 15000	64000 14400
	45	100	0.7460 25	53.001	91.999	1.5	55.500	89.500		17 x 17	92900	85100
309	1.7717	3.9370	0.9843	2.087	3.622	0.059	2.1850	3.5236	10	0.6693 x 0.6693	20900	19100
409	45	120	29	55.499	109.499	2	64.500	100.500	12	18 x 18	120000	118000
700	1.7717	4.7244	1.1417	2.185	4.311	0.079	2.5394	3.9568		0.7087 x 0.7087	27000	26500
010	50 1.9685	72 2.8346	12 0.4724	53.569	68.453 2.695	0.6 0.024	54.000 2.1260	68.000 2.6772	20	7 x 7 0.2756 x 0.2756	29400 6620	33200 7460
	50	80	16	2.109 54.788	75.209	1	56.449	74.449		9 x 9	45300	49700
110	1.9685	3.1496	0.6299	2.157	2.961	0.039	2.2224	2.9311	18	0.3543 x 0.3543	10200	11200
210	50	90	20	55.372	84.633	1	57.650	83.650	14	13 x 13	75000	76000
210	1.9685	3.5433	0.7874	2.180	3.332	0.039	2.2697	3.2933	ļ."	0.5118 x 0.5118	16900	17100
310	1 0000	110	27	59.715	100.279	2	61.950	99.950	10	19 x 19 0.7480 x 0.7480	115000	108000
	1.9685 50	4.3307 130	1.0630 31	2.351 63.957	3.948 116.053	0.079 2	2.4390 71.000	3.9350 109.000		19 x 19	25900 134000	24300 133000
410	1.9685	5.1181	1.2205	2.518	4.569	0.079	2.7953	4.2913	12	0.7480 x 0.7480	30000	30000
011	55	80	13	60.071	74.930	1	60.850	74.850	24	7 x 7	33200	40300
011	2.1654	3.1496	0.5118	2.365	2.950	0.039	2.3957	2.9468	27	0.2756 x 0.2756	7470	9070
111	2 1654	2 5422	18	60.909	84.099	1 0.020	62.049	84.049	16	11 x 11 0.4331 x 0.4331	59400	63300
	2.1654 55	3.5433 100	0.7087 21	2.398 62.128	3.311 92.888	0.039 1.5	2.4429 63.500	3.3090 91.500		14 x 14	13300 86600	14200 89200
211	2.1654	3.9370	0.8268	2.446	3.657	0.059	2.5000	3.6024	14	0.5512 x 0.5512	19500	20100
211	55	120	29	64.973	110.033	2	69.449	107.449	12	19 x 19	133000	133000
311	2.1654	4.7244	1.1417	2.558	4.332	0.079	2.7342	4.2303	12	0.7480 x 0.7480	30000	29900
	55	140	33	68.961	126.035	2	77.500	117.500		20 x 20	148000	150000

 $R \ = \text{maximum shaft or housing fillet radius that bearing corner will clear}.$

 $C_r = ANSI/ABMA$ dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions). $C_{or} = ANSI/ABMA$ static radial load rating.

					Boundary Di	mensions					Load I	Ratings
	d	D	W	Mounting SI	houlder Diameter	R	Nominal I	Roller Path			C,	Cor
Timken Size	_	Outside		Α	S			neter		Roller	Dynamic	Static
Code	Bore	Diameter	Width	Min. Shaft	Max. Housing	Radius	Inner	Outer	No.	Diameter x Length	Radial Capacity	Radial Capacity
	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		mm in.	Newtons lbs.	Newtons lbs.
012	60	85	13	65.024	79.959	1	65.723	79.723	24	7 x 7	32900	40700
UIZ	2.3622	3.3465	0.5118	2.560	3.148	0.039	2.5875	3.1387	24	0.2756 x 0.2756	7390	9140
112	60	95	18	65.837	89.154	1	66.500	88.500	18	11 x 11 0.4331 x 0.4331	64600	72000
	2.3622 60	3.7402 110	0.7087 22	2.592 67.259	3.510 102.743	0.039 1.5	2.6181 69.800	3.4842 101.800		16 x 16	14500 112000	16200 117000
212	2.3622	4.3307	0.8661	2.648	4.045	0.059	2.7480	4.0079	14	0.6299 x0.6299	25200	26400
212	60	130	31	70.231	119.786	2	75.000	115.000	12	20 x 20	148000	149000
312	2.3622	5.1181	1.2205	2.765	4.716	0.079	2.9528	4.5276	12	0.7874 x 0.7874	33200	33500
412	60	150	35	73.965	136.042	2	83.000	127.000	12	22 x 22	178000	182000
	2.3622	5.9055	1.3780	2.912	5.356	0.079	3.2678	5.0000		0.8661 x 0.8661	39900	41000
013	65 2.5591	90 3.5433	13 0.5118	69.977 2.755	85.014 3.347	0.039	70.500 2.7756	84.500 3.3268	26	7 x 7 0.2756 x 0.2756	34600 7770	44300 9970
	65	100	18	70.790	94.209	1	71.500	93.500		11 x 11	64200	72700
113	2.5591	3.9370	0.7087	2.787	3.709	0.039	2.8150	3.6811	18	0.4331 x 0.4331	14400	16300
213	65	120	23	72.593	112.420	1.5	77.299	109.299	14	16 x 16	112000	119000
210	2.5591	4.7244	0.9055	2.858	4.426	0.059	3.0433	4.3031	17	0.6299 x 0.6299	25200	26900
313	65	140	33	74.905	130.099	2	81.600	125.600	12	22 x 22 0.8661 x 0.8661	178000	182000
	2.5591 65	5.5118 160	1.2992 37	2.949 78.969	5.122 146.050	0.079 2	3.2126 89.500	4.9449 135.500			39900 194000	40900 202000
413	2.5591	6.2992	1.4587	3.109	5.750	0.079	3.5237	5.3347	12	23 x 23 0.9055 x 0.9055	43600	45300
	70	100	16	75.260	94.742	1	76.449	94.449	0.4	9 x 9	54400	68800
014	2.7559	3.9370	0.6299	2.963	3.730	0.039	3.0098	3.7185	24	0.3543 x 0.3543	12200	15500
114	70	110	20	76.048	103.937	1	77.000	103.000	18	13 x 13	89600	102000
117	2.7559	4.3307	0.7874	2.994	4.092	0.039	3.0315	4.0551		0.5118 x 0.5118	20100	23000
214	70 2.7559	125 4.9213	24 0.9449	77.572 3.054	117.424 4.623	1.5 0.059	80.500 3.1693	114.500 4.5079	14	17 x 17 0.6693 x 0.6693	121000 27200	129000 28900
	70	4.9213 150	35	81.153	138.836	2	87.200	135.200		24 x 24	210000	217000
314	2.7559	5.9055	1.3780	3.195	5.466	0.079	3.4331	5.3228	12	0.9449 x 0.9449	47200	48900
414	70	180	42	87.503	162.484	2.5	99.000	151.000	12	26 x 26	239000	251000
414	2.7559	7.0866	1.6535	3.445	6.397	0.098	3.8977	5.9449	12	1.0236 x 1.0236	53700	56400
015	75	105	16	80.289	99.720	1	81.000	99.000	24	9 x 9	54100	69200
	2.9528 75	4.1339	0.6299 20	3.161 81.026	3.926 108.966	0.039 1	3.1890 82.000	3.8976		0.3543 x 0.3543	12200 89200	15500 103000
115	2.9528	115 4.5276	0.7874	3.190	4.290	0.039	3.2283	108.000 4.2520	18	13 x 13 0.5118 x 0.5118	20100	23200
	75	130	25	82.550	122.428	1.5	84.500	120.500		18 x 18	135000	145000
215	2.9528	5.1181	0.9843	3.250	4.820	0.059	3.3268	4.7441	14	0.7087 x 0.7087	30400	32600
315	75	160	37	86.436	148.565	2	92.800	144.800	12	26 x 26	238000	247000
010	2.9528	6.2992	1.4567	3.403	5.849	0.079	3.6535	5.7008		1.0236 x 1.0236	53500	55600
415	75	190	45	92.507	172.491	2.5	104.501	160.501	12	28 x 28 1.1024 x 1.1024	276000	292000
	2.9528 80	7.4803 110	1.7717 16	3.642 85.242	6.791 104.750	0.098 1	4.1142 86.000	6.3190 104.000		9 x 9	62000 56900	65700 75400
016	3.1496	4.3307	0.6299	3.356	4.124	0.039	3.3858	4.0945	26	0.3543 x 0.3543	12800	16900
116	80	125	22	86.081	118.923	1	89.500	115.500	20	13 x 13	95900	116000
116	3.1496	4.9213	0.8661	3.389	4.682	0.039	3.5236	4.5472	20	0.5118 x 0.5118	21500	26100
216	80	140	26	89.383	130.607	2	92.000	128.000	16	18 x 18	149000	168000
	3.1496 80	5.5118 170	1.0236 39	3.519 91.719	5.142 158.293	0.079 2	3.6220 99.368	5.0394 155.368		0.7087 x 0.7087	33600 275000	37800 289000
316	3.1496	6.6929	1.5354	3.611	6.232	0.079	3.9121	6.1169	12	28 x 28 1.1024 x 1.1024	61800	65000
	80	200	48	97.511	182.499	2.5	110.000	170.000	10	30 x 30	315000	337000
416	3.1496	7.8740	1.8898	3.839	7.185	0.098	4.3307	6.6929	12	1.1811 x 1.1811	70800	75700
017	85	120	18	90.703	114.300	1	92.049	114.049	24	11 x 11	77500	99900
017	3.3465	4.7244	0.7087	3.571	4.500	0.039	3.6240	4.4901		0.4331 x 0.4331	17400	22500
117	85 2 2465	130	0.0001	91.262	123.749	1 0.020	93.500	121.500	20	14 x 14 0.5512 x 0.5512	111000	135000
	3.3465 85	5.1181 150	0.8661 28	3.593 94.513	4.872 140.487	0.039 2	3.6811 98.499	4.7835 138.499			24900 166000	30400 183000
217	3.3465	5.9055	1.1024	3.721	5.531	0.079	3.8779	5.4527	14	20 x 20 0.7874 x 0.7874	37300	41100
017	85	180	41	98.450	166.548	2.5	104.500	160.500	10	28 x 28	276000	292000
317	3.3465	7.0866	1.6142	3.876	6.557	0.098	4.1142	6.3189	12	1.1024 x 1.1024	62000	65700
	85	210	52	107.772	187.249	3	115.500	179.500	12	32 x 32	356000	384000

continued on next page

R = maximum shaft or housing fillet radius that bearing corner will clear. $C_r = ANSI/ABMA$ dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions). $C_{or} = ANSI/ABMA$ static radial load rating.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE continued

					Boundary Di	mensions					Load F	latings
	d	D	W	Mounting SI	noulder Diameter	R	Nominal I	Roller Path		D-II	C _r	C _{or}
ïmken Size Code	Bore	Outside Diameter	Width	A Min. Shaft	S Max. Housing	Radius		neter Outer	No.	Roller Diameter	Dynamic Radial Capacity	Static Radial Capacity
	mm	mm	mm	mm	mm	mm	mm	mm	140.	x Length mm	Newtons	Newtons
	in. 90	in. 125	in. 18	in. 95.682	in.	in.	in.	in.		in.	lbs. 77000	lbs. 100000
018	3.5433	4.9213	0.7087	3.767	119.329 4.698	0.039	97.050 3.8209	119.050 4.6870	24	11 x 11 0.4331 x 0.4331	17300	22600
110	90	140	24	97.587	132.410	1.5	100.749	130.749	20	15 x 15	127000	157000
118	3.5433	5.5118	0.9449	3.842	5.213	0.059	3.9665	5.1476	20	0.5906 x 0.5906	28500	35200
218	90	160	30	100.863	149.149	2	105.000	145.000	16	20 x 20	183000	211000
	3.5433	6.2992	1.1811	3.971	5.872	0.079	4.1339	5.7087		0.7874 x 0.7874	41200	47500
318	90 3.5433	190 7.4803	43 1.6929	103.759 4.085	176.251 6.939	2.5 0.098	111.501 4.3898	171.501 6.7520	12	30 x 30 1.1811 x 1.1811	315000 70800	338000 75900
	90	225	54	112.751	202.235	3	123.500	191.500	10	34 x 34	401000	437000
418	3.5433	8.8583	2.1260	4.439	7.962	0.118	4.8622	7.5394	12	1.3386 x 1.3386	90100	98300
019	95	130	18	100.711	124.282	1	102.050	124.050	26	11 x 11	81200	109000
010	3.7402	5.1181	0.7087	3.965	4.893	0.039	4.0177	4.8839		0.4331 x0.4331	18300	24600
119	95	145	24	102.591	137.414	1.5	104.800	136.800	20	16 x 16 0.6299 x 0.6299	144000	179000
	3.7402 95	5.7087 170	0.9449 32	4.039 106.197	5.410 158.801	0.059 2	4.1260 111.600	5.3858 155.600		22 x 22	32300 221000	40200 257000
219	3.7402	6.6929	1.2598	4.181	6.252	0.079	4.3937	6.1260	16	0.8661 x 0.8661	49600	57800
	95	200	45	109.068	185.928	2.5	117.099	181.099	10	32 x 32	356000	386000
319	3.7402	7.8740	1.7717	4.294	7.320	0.098	4.6102	7.1299	12	1.2598 x 1.2598	80100	86700
419	95	240	55	117.754	217.246	3	132.500	202.500	12	35 x 35	416000	456000
713	3.7402	9.4488	2.1654	4.636	8.553	0.118	5.2165	7.9725	'-	1.3780 x 1.3780	93400	103000
020	100	140	20	105.969	134.036	1	108.000	132.000	24	12 x 12 0.4724 x 0.4724	91100	121000
	3.9370 100	5.5118 150	0.7874 24	4.172 107.442	5.277 142.545	0.039 1.5	4.2520 109.800	5.1968 141.800			20500 143000	27300 180000
120	3.9370	5.9055	0.9449	4.230	5.612	0.059	4.3228	5.5827	20	16 x 16 0.6299 x 0.6299	32200	40400
	100	180	34	111.531	168.478	2	115.000	165.000	1	25 x 25	249000	279000
220	3.9370	7.0866	1.3386	4.391	6.633	0.079	4.5275	6.4960	14	0.9843 x 0.9843	56000	62700
320	100	215	47	115.976	199.009	2.5	123.300	195.300	10	36 x 36	380000	395000
320	3.9370	8.4646	1.8504	4.566	7.835	0.098	4.8543	7.6890	10	1.4173 x 1.4173	85500	88700
420	100	250	58	122.758	227.228	3	139.000	211.000	12	36 x 36 1.4173 x 1.4173	439000	486000
	3.9370 105	9.8424	2.2835 20	4.833	8.946 139.040	0.118 1	5.4724	8.3070			98800	109000
021	4.1339	145 5.7087	0.7874	110.947 4.368	5.474	0.039	113.000 4.4488	137.000 5.3937	24	12 x 12 0.4724 x 0.4724	90500 20300	122000 27400
	105	160	26	114.859	150.139	2	116.350	150.350		17 x 17	155000	194000
121	4.1339	6.2992	1.0236	4.522	5.911	0.079	4.5807	5.9193	20	0.6693 x 0.6693	34800	43600
221	105	190	36	116.865	178.130	2	122.800	174.800	14	26 x 26	269000	305000
221	4.1339	7.4803	1.4173	4.601	7.013	0.079	4.8346	6.8819	1.7	1.0236 x 1.0236	60400	68500
321	105	225	49	121.260	208.737	2.5	130.799	202.799	12	36 x 36	438000	480000
	4.1339 105	8.8583	1.9291 60	4.774	8.218	0.098 3	5.1496	7.9842		1.4173 x 1.4173	98500	108000
421	4.1339	260 10.2362	2.3622	127.762 5.030	237.236 9.340	0.118	145.500 5.7284	219.500 8.6418	12	37 x 37 1.4567 x 1.4567	464000 104000	517000 116000
	110	150	2.3022	115.926	144.069	1	118.000	142.000	-	12 x 12	95500	132000
022	4.3307	5.9055	0.7874	4.564	5.672	0.039	4.6457	5.5905	26	0.4724 x 0.4724	21500	29800
122	110	170	28	120.091	159.918	2	121.000	159.000	18	19 x 19	179000	219000
122	4.3307	6.6929	1.1024	4.728	6.296	0.079	4.7638	6.2598	10	0.7480 x 0.7480	40200	49300
222	110	200	38	122.199	187.782	2	127.000	183.000	14	28 x 28	311000	354000
	4.3307	7.8740	1.4961	4.811	7.393	0.079	5.0000	7.2047		1.1024 x 1.1024	69800	79600
322	110 4.3307	240 9.4480	50 1.9685	127.102 5.004	222.885 8.775	2.5 0.098	138.900 5.4685	214.900 8.4606	12	38 x 38 1.4961 x 1.4961	487000 109000	539000 121000
	110	280	65	132.740	257.251	3	155.000	235.000		40 x 40	539000	608000
422	4.3307	11.0236	2.5591	5.226	10.128	0.118	6.1024	9.2520	12	1.5748 x 1.5748	121000	137000
024	120	165	22	126.162	158.852	1	129.200	157.200	26	14 x 14	130000	182000
024	4.7244	6.4961	0.8661	4.967	6.254	0.039	5.0866	6.1890	20	0.5512 x 0.5512	29300	41000
124	120	180	28	130.124	169.875	2	131.950	169.950	20	19 x 19	192000	247000
	4.7244	7.0866	1.1024	5.123	6.688	0.079	5.1949	6.6909		0.7480 x 0.7480	43200	55400
224	120	215	1 5740	132.105	202.895	2	138.999	198.999	14	30 x 30 1.1811 x 1.1811	355000	411000
	4.7244 120	8.4646 260	1.5748 55	5.201 138.379	7.988	0.079 2.5	5.4724 150.099	7.8346			79800 590000	92400 662000
324	4.7244	10.2362	2.1654	5.448	241.630 9.513	0.098	5.9094	234.099 9.2165	12	42 x 42 1.6535 x 1.6535	133000	149000
	120	310	72	154.940	275.057	4	170.000	260.000		45 x 45	676000	774000
424	4.7244	12.2047	2.8346	6.100	10.829	0.157	6.6929	10.2362	12	1.7717 x 1.7717	152000	174000

 $R \ = \mbox{maximum shaft or housing fillet radius that bearing corner will clear}.$

 $C_r = ANSI/ABMA$ dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions). $C_{or} = ANSI/ABMA$ static radial load rating.

					Boundary Di	mensions					Load F	Ratings
	d	D	W	Mounting SI	noulder Diameter	R	Nominal I	Roller Path			C,	C _{or}
Timken Size		Outside		Α	S	-		neter		Roller	Dynamic	Static
Code	Bore	Diameter	Width	Min. Shaft	Max. Housing	Radius	Inner	Outer	No.	Diameter x Length	Radial Capacity	Radial Capacity
	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		mm in.	Newtons lbs.	Newtons lbs.
	130	180	24	138.430	171.552	1.5	140.000	170.000	00	15 x 15	148000	211000
026	5.1181	7.0866	0.9449	5.450	6.754	0.059	5.5118	6.6929	26	0.5906 x 0.5906	33400	47500
100	130	200	33	140.564	189.433	2	145.000	185.000	20	20 x 20	212000	276000
126	5.1181	7.8740	1.2992	5.534	7.458	0.079	5.7087	7.2835	20	0.7874 x 0.7874	47600	62100
226	130	230	40	144.704	215.290	2.5	151.501	211.501	16	30 x 30	392000	477000
	5.1181	9.0551	1.5748	5.697	8.476	0.098	5.9646	8.3268		1.1811 x 1.1811	88000	107000
326	130	280	58	150.800	259.182	3	162.250	252.250	12	45 x 45	674000	766000
	5.1181	11.0236	2.2835	5.937	10.204	0.118	6.3878	9.9311		1.7717 x 1.7717	152000	172000
426	130	340	78	164.948	305.054	4	186.000	284.000	12	49 x 49 1.9291 x 1.9291	796000	925000
	5.1181 140	13.3858 190	3.0709 24	6.494 148.438	12.010 181.559	0.157 1.5	7.3229 150.000	11.1811 180.000			179000 155000	208000 229000
028	5.5118	7.4803	0.9449	5.844	7.148	0.059	5.9055	7.0866	28	15 x 15 0.5906 x 0.5906	34900	51500
	140	210	33	150.647	199.365	2	155.000	195.000		20 x 20	225000	306000
128	5.5118	8.2677	1.2992	5.931	7.849	0.079	6.1024	7.6772	22	0.7874 x 0.7874	50700	68900
	140	250	42	155.931	234.061	2.5	163.000	227.000		32 x 32	443000	547000
228	5.5118	9.8425	1.6535	6.139	9.215	0.098	6.4173	8.9370	16	1.2598 x 1.2598	99700	123000
000	140	300	62	161.366	278.638	3	172.499	272.499	10	50 x 50	717000	788000
328	5.5118	11.8110	2.4409	6.353	10.970	0.118	6.7913	10.7283	10	1.9685 x 1.9685	161000	177000
428	140	360	82	174.930	325.069	4	199.000	301.000	12	51 x 51	860000	1010000
420	5.5118	14.1732	3.2283	6.887	12.798	0.157	7.8346	11.8504	12	2.0079 x 2.0079	193000	227000
030	150	210	28	159.944	200.050	2	163.000	197.000	28	17 x 17	191000	282000
	5.9055	8.2677	1.1024	6.297	7.876	0.079	6.4173	7.7559		0.6693 x 0.6693	43000	63400
130	150	225	35	161.519	213.487	2	167.005	211.005	22	22 x 22	272000	374000
	5.9055	8.8583	1.3780	6.359	8.405	0.079	6.5750	8.3072		0.8661 x 0.8661	61100	84000
230	150 5.9055	270 10.6299	45 1.7717	166.649 6.561	253.340 9.974	2.5 0.098	174.000 6.8504	246.000 9.6850	14	36 x 36 1.4173 x 1.4173	494000 111000	591000 133000
	160	220	28	169.875	210.134	2	172.000	208.000			214000	319000
032	6.2992	8.6614	1.1024	6.688	8.273	0.079	6.7716	8.1890	28	18 x 18 0.7087 x 0.7087	48100	71600
	160	240	38	172.110	227.889	2	176.000	224.000		24 x 24	323000	447000
132	6.2992	9.4488	1.4961	6.776	8.972	0.079	6.9291	8.8189	22	0.9449 x 0.9449	72700	101000
	160	290	48	177.470	272.542	2.5	189.000	261.000	10	36 x 36	545000	685000
232	6.2992	11.4173	1.8898	6.987	10.730	0.098	7.4409	10.2756	16	1.4173 x 1.4173	122000	154000
034	170	230	28	179.908	220.091	2	182.900	218.900	28	18 x 18	212000	320000
034	6.6929	9.0551	1.1024	7.083	8.665	0.079	7.2008	8.6181	20	0.7087 x 0.7087	47700	72000
134	170	260	42	182.677	247.320	2	189.000	241.000	22	26 x 26	367000	510000
104	6.6929	10.2362	1.6535	7.192	9.737	0.079	7.4409	9.4882		1.0236 x 1.0236	82600	115000
036	180	250	33	190.475	239.522	2	195.000	235.000	28	20 x 20	262000	399000
	7.0866	9.8425	1.2992	7.499	9.430	0.079	7.6771	9.2519		0.7874 x 0.7874	58900	89800
136	180	280	46	192.634	267.360	2	200.000	260.000	20	30 x 30	455000	621000
	7.0866 190	11.0236	1.8110 33	7.584 200.406	10.526 249.580	0.079 2	7.8740 205.000	10.2362 245.000		1.1811 X 1.1811	102000 260000	140000 401000
038	7.4803	260 10.2362	1.2992	7.890	9.826	0.079	8.0709	9.6456	28	20 x 20 0.7874 x 0.7874	58500	90200
	190	290	46	202.895	277.114	2	208.000	272.000		32 x 32	517000	709000
138	7.4803	11.4173	1.8110	7.988	10.910	0.079	8.1890	10.7086	20	1.2598 x 1.2598	116000	159000
	200	280	38	211.887	268.097	2	216.000	264.000		24 x 24	357000	540000
040	7.8740	11.0236	1.4961	8.342	10.555	0.079	8.5039	10.3937	26	0.9449 x 0.9449	80300	121000
044	220	300	38	231.800	288.188	2	236.000	284.000	20	24 x 24	372000	587000
044	8.6614	11.8110	1.4961	9.126	11.346	0.079	9.2913	11.1811	28	0.9449 x 0.9449	83700	132000

R = maximum shaft or housing fillet radius that bearing corner will clear. $C_r = ANSI/ABMA$ dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions). $C_{or} = ANSI/ABMA$ static radial load rating.

BALL BEARINGS

BASIC CONSTRUCTION TYPES

Any of four basic ball bearing constructions in sizes ranging from 10 mm bore to 600 mm (0.3937 in. to 23.6220 in.) O.D. can be manufactured to meet the most demanding performance requirements.

Selection of the bearing construction best suited to the application must consider the relative importance of the various design functions as listed on page 12. The following general descriptions of each type will further assist in the proper selection.

HK Type

Fig. 5. Deep-groove (Conrad) design.

The conventional deep-groove (Conrad) bearing's versatile load capability allows it to handle radial, axial, moment, reversible axial or combination load ng conditions Cages - either a twopiece (riveted or welded) design or a one-piece, open-face crown design - while not having the ultimate strength and speed capability of a one-piece solid design – perform well in most applications. Where speeds and loads are severe, Timken Aerospace has developed high-strength deep-groove cage options. Seals and/or shields are readily adaptable to this series, particularly with high-strength, non-metallic molded crown cages.

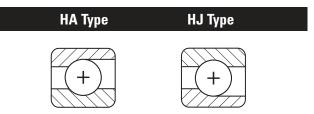


Fig. 6. Angular contact.

Conventional non-separable angular contact bearings with counterbored rings and one-piece, high-strength cages are used in preloaded and/or axially loaded applications. HJ type is especially suited to ult a-high speed applicat ons. Two contact angle ranges are normally specified: 15 degree nominal for lightly preloaded radial applications; 25 degree nominal for heavy preloads and high external axial loads. Angular contact bearings may be supplied as duplex, triplex, etc., sets, which can be accurately preloaded to any specific level and with contact angles that can deviate from those normally specified.

HD Type

Fig. 7. Deep-groove fractured race.

The fractured outer ring design allows a maximum ball complement in a radial deep-groove bearing. This provides up to 56 percent greater dynamic load capacity and 280 percent longer design life over standa d deep-groove types. One-piece, high-strength cages allow for higher speeds and loads while reducing the chance of cage damage. While HD bearings are used primarily for radial loads, high-strength 17-4PH stainless holding bands, pressed on ground shoulders, retain the fracture under moderate axial load at 1.0 speed limit dN 106. Normal mounting procedures are used, except under severe axial loading or misalignment. Several stacked holding bands can be used to increase the holding power for loose-fit housings. In this case, observe special precaution to avoid displacement or opening of the fracture. Extensive experience has proven there is no advanced tendency to fatigue at the fracture under normal operation with a properly retained outer ring.

HT Type

Fig. 8. Two-piece inner ring.

High-performance two piece inner r ng bearings are typically used on high-speed shafts with reversing axial loads. Full deep-groove outer ring, one-piece high-strength cage and two extra-deep-groove inner ring halves provide the maximum level of reliability with full axial capacity in either direction. Simultaneous race grinding assures matching between the two inner ring halves, and a controlled offset may be specified to reduce endplay. The HT series can be readily disassembled for inspection of the race and ball components. Ball-retaining cages or a removable retaining clip – designed to hold inner halves together during normal handling – also are used. Operating contact angles are usually set between 25 degrees and 35 degrees, but develop final selections of detailed characteristics with your Timken engineer.

CAGE OPTIONS

Following the selection of the basic bearing construction, choosing the proper cage and ball complement results in the optimum bearing for the application. The ball bearing cage is critical to bearing performance. While its primary purpose is to separate the balls in the bearing assembly, it must be evaluated for each application as to:

- Performance at various speed levels.
- Compatibility with environmental conditions.
- Compatibility with lubricant systems.
- Cost and availability.

The tables below summarize cage options for metric ball bearings.

Cage Code	Material and Type	Design	Temp. Limit	Speed Limit dN 10 ⁶	Description		
R	Laminated cotton phenolic;		135° C	0.4	Specified for use with oil impregnation or where a lightweight, land-riding		
n	one-piece crown snap in	 	275° F	0.4	cage is required.		
Т	Stamped low-carbon steel;		230° C	0.5	Use for low-speed, low-temperature accessory applications.		
'	two-piece riveted		450° F	0.5	Ose for fow-speed, low-temperature accessory applications.		
U	Phosphor bronze; stamped two-piece riveted; land piloted;		190° C	1.0	Allows rapid acceleration with minimum inertia and maximum exposure to		
	with shaped pockets	} ★ {	375° F	1.0	oil flow. Tooling available for limited number of sizes.		
В	Precision-machined brass;		190° C	1.0	Use for high speeds in aircraft accessories.		
D	two-piece riveted	(P)	375° F	1.0	ose for high speeds in allerate accessories.		
Z	AMS 4616 silicon-iron bronze;		260° C	1.5	Similar to brass with better strength and wear resistance. Frequently used in combination with VIM-VAR M-50 rings where temperatures exceed the		
	machined, two-piece riveted	(P)	500° F	1.5	177° C (350° F) limit for 52100 steel.		
Н	Machined and hardened		480° C	2.0	Use for ultra-high speeds in aircraft accessories. Silver-plating improves wear resistance under marginal lubrication. Normally used		
"	AMS 6414 or 6415 alloy steel; silver-plated; two-piece riveted		900° F	2.0	improves wear resistance under marginal lubrication. Normally used with M-50 rings and balls.		

Table 5. Deep-groove bearing cage options. Deep-groove cages are two-piece or open-face crown designs.

SPECIAL CAGE OPTIONS

Conrad-design bearings utilizing precision machined cages can be provided with stepped interfaces and detents to meet the needs of applications that experience extreme operating conditions.

Fig.9. Special cage options.

MAXIMUM CAPACITY CAGE OPTIONS

With the exception of the special full ball complement or stamped-steel cage design, all cages for maximum-capacity ball bearings are one-piece machined designed for maximum strength and balance. They are normally designed to pilot on the outer land to optimize oil-jet lubrication of the inner ring. Outer-land piloting cages provide a self-balancing effect, since any wear improves balance.

Cage Code	Material and Type	Design	Temp. Limit	Speed Limit dN 10 ⁶	Description
F	Full ball complement	00000	Same as bearing material	0.3	Use primarily at low speeds under high radial loads. Provides the maximum possible static and dynamic load capacity. Also use to reduce cost where a cage is not required. Should not be used under heavy combined or misaligned loads with continuous rotation, since the differential ball speeds will cause ball-to-ball scrubbing and a substantial reduction in life.
R	Laminated cotton machined		135° C	1.0	Use on lightly loaded grease or oil-mist lubricated applications. May be vacuum
n	phenolic; one-piece		275° F	1.0	impregnated to enhance life in "one shot" oiled or greased applications.
В	Precision-machined brass;		190° C	1.5	Use in heavily loaded transmission and accessory applications.
В	drilled; one-piece		375° F	1.5	Excellent strength and wear performance.
Z	AMS 4616 silicon-iron-bronze;		260° C	2.0	Similar to brass with better strength and wear-resistance. Frequently used in
Z	machined; one-piece		500° F	2.0	combination with VIM-VAR M-50 rings where temperatures exceed the 177° C (350° F) limit for 52100 steel.
	Machined and hardened		480° C	2.0	VIM-VAR M-50 bearings with silver-plated steel cages are first choice of the turbine industry for critical performance mainshaft and powertrain bearings.
Н	AMS 6414 or 6415 alloy steel; silver-plated; one-piece		900° F	3.0	Steel is silver-plated to enhance run-in, wear life and to provide maximum continuity after lubricant loss.

Table 6. Maximum-capacity bearing cage options.

SEALS AND SHIELDS

Deep-groove construction bearings and some angular contact bearings can be supplied with various types of seals or shields. The choice of seal/shield configuration and material depends on the bearing type and specific application conditions. Shields are used when low torque is important or when excessive heat generation is a concern; however, some degree of grease leakage must be tolerable and the environment relatively clean. Seals have better resistance to contamination and less grease loss, but, conversely, increase torque and heat generation. Typically, molded types of closures are of either Buna N or Viton® and cut-washer types of Teflon® or glass-reinforced Teflon. Stamped-metal shields may be either low-carbon or stainless steel.

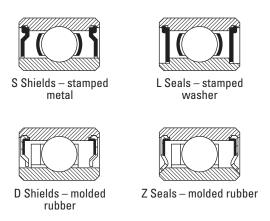


Fig. 10. Seal and shield configurations.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE

BALL BEARING SPECIFICATIONS

To develop a complete bearing part number:

- 1) Select MATERIALS AND OPERATING TEMPERATURES prefix (see page 40).
- 2) Select CONSTRUCTION TYPE, plus CAGE, plus SEAL prefixes.

		НК	HA/HJ	HD	НТ
Cages		Deep Groove	Angular Contact	Fractured Ring	Two-Piece Inner Ring
			Construc	ction Types	
Full ball complement	F		HAF, HJF	HDF	HTF
Machined phenolic	R	HKR	HAR, HJR	HDR	HTR
Stamped steel	Т	НКТ			
Stamped brass	U	нки			
Machined brass	В	НКВ	НАВ, НЈВ	HDB	НТВ
Si-Fe bronze	Z	HKZ	HAZ, HJZ	HDZ	HTZ
Silver-plated steel	Н	нкн	НАН, НЈН	HDH	нтн

		нк	нк
Shields and Seals		One Side	Two Sides
		Construct	tion Types
Shield - stamped steel	S	HK * S	HK * SS
Shield - molded rubber	D	HK * D	HK * DD
Seal - stamped washer	L	HK * L	HK * LL
Seal - molded rubber	Z	HK * Z	HK * ZZ

^{* =} Cage selection from above

- 3) Select basic bearing TIMKEN SIZE CODE. (See tables on pages 26-30.)
- 4) Add suffixes for TOLERANCE code (see pages 31-39), RADIAL PLAY code (see pages 41-43), PRELOAD code (see page 44) and LUBRICATION code (see pages 51-53). If any codes are omitted, standard values are applied. For complex assemblies, Timken substitutes a dash number (in lieu of suffixes) to cover all special features.

Examples	3HAH 104 P5(4)DB 10/20	HDB 306-91	26HKTZZ 108-183
Material	3 = 440C stainless steel	Air-melt 52100 steel	CEVM 52100 steel
Construction	HA = angular contact	HD = fractured ring type	HK = deep groove
Cage	H = silver-plated steel	B = machined brass	T = stamped steel
Seals/Shields	(none)	(none)	ZZ = (2) molded-rubber seals
Size	104	306	108
Dash Number	(not used, standard part)	-91 = special features detailed under "dash" 91 code	-183 = special features detailed under "dash" 183 code
Tolerance	Timken P5 = ABEC 5	(not used, dash # part)	(not used, dash # part)
Radial Play	(4) = range 4 clearance	(not used, dash # part)	(not used, dash # part)
Preload	DB10/20 = DB 10 lbs. min to 20 lbs. max	(not used, dash # part)	(not used, dash # part)
Lubrication	No code shown = standard dip	(not used, dash # part)	(not used, dash # part)

Table 8. Ball bearing part number examples.

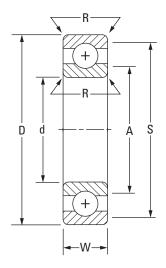


Fig. 11. Ball bearing dimensional features.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE

				oundary Dime		D				Load R	atings		
	d	D	W		noulder Diameter	R	-	Max. Ca	pacity Types H			CONRAD Typ	1
Timken				Α	S		Ball		C _r	Cor		C _r	Cor
Size Code	Bore	Outside Diameter	Width	Min. Shaft	Max. Housing	Radius	Diameter	Balls No. (3)	Dynamic Radial Capacity	Static Radial Capacity	Balls No. (3)	Dynamic Radial Capacity	Static Radial Capacity
	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		Newtons lbs.	Newtons lbs.		Newtons lbs.	Newtons lbs.
000	10	22	6	12.014	19.964	0.3	3.572	11	3790	1900	8	3060	1370
	0.3937	0.8661	0.2362	0.473	0.786	0.012	9/64	''	852	427	•	688	307
100	10	26	8	12.421	23.571 (1)	0.3	4.763	10	5850	2860	7	4580	1970
	0.3937	1.0236	0.3150	0.489	0.928(1)	0.012	3/16		1310	644	-	1030	443
200	10	30	9	14.021	25.984	0.6	6.350	9	8690	4150	6	6550	2720
	0.3937 10	1.1811 35	0.3543 11	0.552 14.453	1.023 30.556	0.024 0.6	7.144		1950 10900	933 5350		1470 8100	612 3440
300	0.3937	1.3780	0.4331	0.569	1.203	0.024	9/32	9	2440	1200	6	1820	774
	12	24	6	14.021	21.996	0.024	3.572		4260	2350		3330	1610
001	0.4724	0.9449	0.2362	0.552	0.866	0.012	9/64	13	959	528	9	749	362
404	12	28	8	14.326	25.679	0.3	4.763		6310	3260		5140	2440
101	0.4724	1.1024	0.3150	0.564	1.011	0.012	3/16	11	1420	734	8	1160	549
201	12	32	10	15.697	28.296	0.6	5.953	10	8690	4410	7	6900	3150
201	0.4724	1.2598	0.3937	0.618	1.114	0.024	15/64	10	1950	991		1550	708
301	12	37	12	17.043	32.029	1	7.938	8	11800	5650	6	9710	4190
001	0.4724	1.4567	0.4724	0.671	1.261	0.039	5/16	Ů	2660	1270		2180	941
002	15	28	7	17.043	25.959	0.3	3.969	14	5410	3170	10	4320	2250
	0.5906	1.1024	0.2756	0.671	1.022	0.012	5/32		1220	712		972	506
102	15	1 2500	9	17.424	29.591(1)	0.3	5.556	11	8320	4440	8	6730	3220
	0.5906 15	1.2598 35	0.3543 11	0.686 18.542	1.165 ⁽¹⁾ 31.471	0.012 0.6	⁷ / ₃₂ 5.953		1870 9430	997 5090		1510 7620	725 3690
202	0.5906	1.3780	0.4331	0.730	1.239	0.024	15/64	11	2120	1140	8	1710	830
	15	42	13	20.218	36.906	1	8.731		15500	7950		11800	5240
302	0.5906	1.6535	0.5118	0.796	1.453	0.039	11/32	9	3500	1790	6	2650	1180
	17	30	7	19.025	27.991	0.3	3.969		5650	3470		4600	2550
003	0.6693	1.1811	0.2756	0.749	1.102	0.012	5/32	15	1270	781	11	1030	573
100	17	35	10	19.380	32.614 ⁽²⁾	0.3	5.556	10	8920	5060	0	6810	3360
103	0.6693	1.3780	0.3937	0.763	1.284(2)	0.012	7/32	12	2010	1140	8	1530	756
203	17	40	12	20.701	36.297	0.6	7.144	10	12200	6520	8	10500	5210
200	0.6693	1.5748	0.4724	0.815	1.429	0.024	9/32	10	2740	1470	0	2360	1170
303	17	47	14	22.327	41.681	1	9.525	9	18300	9550	6	13900	6340
	0.6693	1.8504	0.5512	0.879	1.641	0.039	3/8	_	4120	2150		3130	1430
403	17	62	17	27.635	51.359	1	12.700	8	27500	14400	6	22700	10800
	0.6693	2.4409 37	0.6693 9	1.088 22.200	2.022 34.798 ⁽¹⁾	0.039 0.3	½ 4.763		6180	3230		5100	2430 3680
004	20 0.7874	1.4567	0.3543	0.874	1.370(1)	0.012	4.703 3/16	16	8180 1840	5390 1210	11	6380 1430	827
-	20	42	12	23.546	38.456 ⁽¹⁾	0.6	6.350		12000	7240		9380	5030
104	0.7874	1.6535	0.4724	0.927	1.514(1)	0.024	1/4	13	2690	1630	9	2110	1130
	20	47	14	24.689	42.291	1	7.938		15800	9040		12800	6580
204	0.7874	1.8504	0.5512	0.972	1.665	0.039	5/16	11	3550	2030	8	2880	1480
304	20	52	15	25.197	46.812	1	9.525	10	20300	11400	7	15900	7880
304	0.7874	2.0472	0.5906	0.992	1.843	0.039	3/8	10	4570	2560	_ ′	3590	1770
404	20	72	19	30.632	61.366	1	14.288	7	31500	16300	6	28700	14100
101	0.7874	2.8346	0.7480	1.206	2.416	0.039	9/16		7080	3660		6460	3180
005	25	42	9	27.178	39.827	0.3	4.763	19	9040	6630	13	7030	4520
	0.9843	1.6535	0.3543	1.070	1.568	0.012	3/16		2030	1490		1580	1020
105	25	1 0504	12	28.651	43.332(1)	0.6	7.144	14	15600	10000	9	11600	6440
	0.9843 25	1.8504 52	0.4724 15	1.128	1.706(1)	0.024 1	%2 7.938		3500 17900	2260		2610 14000	1450 7830
205	0.9843	2.0472	0.5906	29.616 1.166	47.396 1.866	0.039	7.938 5/16	13	4030	11300 2540	9	3150	1760
	25	62	17	30.607	56.388	1	11.113		28600	17200		21200	10900
305	0.9843	2.4409	0.6693	1.205	2.220	0.039	7/16	11	6440	3860	7	4770	2450
,	25	80	21	37.262	67.742	1.5	16.669		45100	25000	_	37200	18700
405	0.9843	3.1496	0.8268	1.467	2.667	0.059	21/32	8	10100	5630	6	8370	4210
							,						

 $^{^{(1)}}$ Reduce by 0.635 mm (0.025 in.) for fractured race HD bearings.

Reduce by 1.270 mm (0.050 in.) for fractured race HD bearings.
 Ball complement is normally one less than the number listed when non-metallic cages or separable HT and HJ bearings with modified cages for ball retention are specified.

R = maximum shaft or housing fillet radius that bearing corner will clear.

 $C_{\rm r}$ = ANSI/ABMA dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions).

 C_{or} = ANSI/ABMA static radial load rating.

• • • • Ball Bearings

Timken Size Code 006 106 206 306 406 007 107 207 307 407 008 108	mm in. 30 1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	D Outside Diameter mm in. 47 1.8504 55 2.1654 62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	W Width mm in. 9 0.3543 13 0.5118 16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	Min. Shaft mm in. 32.207 1.268 34.544 1.360 34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624 1.560	mm in. 44.806 ¹² 1.764 ¹² 50.470 1.987 57.099 2.248 66.091 2.602 77.749 3.061 51.664 ⁽¹⁾ 2.034 ⁽¹⁾ 57.379	R Radius mm in. 0.3 0.012 1 0.039 1 0.039 1.5 0.059 0.6	Ball Diameter mm in. 4.763 3/16 7.144 9/52 9.525 3/6 12.700 1/2 17.463	Balls No. (3) 21 17 13	C, Dynamic Radial Capacity Newtons lbs. 9490 2130 17700 3970 24900 5590 36600 8220	C _{or} Static Radial Capacity Newtons Ibs. 7520 1690 12900 2890 16300 3660 22700 5110	Balls No. (3) 14 11 9 7	CONRAD Type C, Dynamic Radial Capacity Newtons lbs. 7240 13200 2980 19500 4370 27100 6090	C _{or} Static Radial Capacity Newtons lbs. 5010 1130 8270 1860 11300 2530 14500 3250
Size Code 006 106 206 306 406 007 107 207 307 407 008	mm in. 30 1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	mm in. 47 1.8504 55 2.1654 62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	mm in. 9 0.3543 13 0.5118 16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	mm in. 32.207 1.268 34.544 1.360 34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	mm in. 44.806 ⁽²⁾ 1.764 ⁽²⁾ 50.470 1.987 57.099 2.248 66.091 2.602 77.749 3.061 51.664 ⁽¹⁾ 2.034 ⁽¹⁾	mm in. 0.3 0.012 1 0.039 1 0.039 1 0.039 1 0.039 1 0.059	mm in. 4.763 3/16 7.144 9/52 9.525 3/6 12.700 1/2 17.463	21 17 13 11	Dynamic Radial Capacity Newtons Ibs. 9490 2130 17700 3970 24900 5590 36600 8220	Static Radial Capacity Newtons Ibs. 7520 1690 12900 2890 16300 3660 22700 5110	14 11 9	Dynamic Radial Capacity Newtons Ibs. 7240 1630 13200 2980 19500 4370 27100 6090	Static Radial Capacity Newtons lbs. 5010 1130 8270 1860 11300 2530 14500 3250
Size Code 006 106 206 306 406 007 107 207 307 407 008	mm in. 30 1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	mm in. 47 1.8504 55 2.1654 62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	mm in. 9 0.3543 13 0.5118 16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	mm in. 32.207 1.268 34.544 1.360 34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	mm in. 44.806 ¹² 1.764 ⁽²⁾ 50.470 1.987 57.099 2.248 66.091 2.602 77.749 3.061 51.664 ⁽¹⁾ 2.034 ⁽¹⁾	mm in. 0.3 0.012 1 0.039 1 0.039 1 0.039 1 0.039 1 0.059	mm in. 4.763 3/16 7.144 9/52 9.525 3/6 12.700 1/2 17.463	21 17 13 11	Radial Capacity Newtons lbs. 9490 2130 17700 3970 24900 5590 36600 8220	Radial Capacity Newtons lbs. 7520 1690 12900 2890 16300 3660 22700 5110	14 11 9	Radial Capacity Newtons Ibs. 7240 1630 13200 2980 19500 4370 27100 6090	Radial Capacity Newtons lbs. 5010 1130 8270 1860 11300 2530 14500 3250
106 206 306 406 007 107 207 307 407	in. 30 1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	in. 47 1.8504 55 2.1654 62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	in. 9 0.3543 13 0.5118 16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	in. 32.207 1.268 34.544 1.360 34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	in. 44.806 ⁽²⁾ 1.764 ⁽²⁾ 50.470 1.987 57.099 2.248 66.091 2.602 77.749 3.061 51.664 ⁽¹⁾ 2.034 ⁽¹⁾	in. 0.3 0.012 1 0.039 1 0.039 1 0.039 1 0.039 1.5 0.059	in. 4.763 3/16 7.144 9/32 9.525 3/6 12.700 1/2 17.463	17 13	9490 2130 17700 3970 24900 5590 36600 8220	1bs. 7520 1690 12900 2890 16300 3660 22700 5110	11	1630 1630 13200 2980 19500 4370 27100 6090	lbs. 5010 1130 8270 1860 11300 2530 14500 3250
106 206 306 406 007 107 207 307 407	1.1811 30 1.1811 30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	1.8504 55 2.1654 62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	0.3543 13 0.5118 16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	1.268 34.544 1.360 34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	1.764 (2) 50.470 1.987 57.099 2.248 66.091 2.602 77.749 3.061 51.664 (1) 2.034 (1)	0.012 1 0.039 1 0.039 1 0.039 1.5 0.059	9/16 7.144 9/32 9.525 3/6 12.700 1/2 17.463 11/16	17 13	2130 17700 3970 24900 5590 36600 8220	1690 12900 2890 16300 3660 22700 5110	11	1630 13200 2980 19500 4370 27100 6090	1130 8270 1860 11300 2530 14500 3250
106 206 306 406 007 107 207 307 407	30 1.1811 30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	55 2.1654 62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	13 0.5118 16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	34.544 1.360 34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	50.470 1.987 57.099 2.248 66.091 2.602 77.749 3.061 51.664(1) 2.034(1)	1 0.039 1 0.039 1 0.039 1.5 0.059	7.144 9/32 9.525 3/6 12.700 1/2 17.463	17 13	17700 3970 24900 5590 36600 8220	12900 2890 16300 3660 22700 5110	11	13200 2980 19500 4370 27100 6090	8270 1860 11300 2530 14500 3250
206 306 406 007 107 207 307 407 008	1.1811 30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35	2.1654 62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	0.5118 16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	1.360 34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	1.987 57.099 2.248 66.091 2.602 77.749 3.061 51.664(1) 2.034(1)	0.039 1 0.039 1 0.039 1.5 0.059	9/32 9.525 3/8 12.700 1/2 17.463 11/16	13	3970 24900 5590 36600 8220	2890 16300 3660 22700 5110	9	2980 19500 4370 27100 6090	1860 11300 2530 14500 3250
306 406 007 107 207 307 407	30 1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35	62 2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	16 0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	34.900 1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	57.099 2.248 66.091 2.602 77.749 3.061 51.664(1) 2.034(1)	1 0.039 1 0.039 1.5 0.059	9.525 3/8 12.700 1/2 17.463 11/16	11	24900 5590 36600 8220	16300 3660 22700 5110		19500 4370 27100 6090	11300 2530 14500 3250
306 406 007 107 207 307 407	1.1811 30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	2.4409 72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	0.6299 19 0.7480 23 0.9055 10 0.3937 14 0.5512	1.374 35.890 1.413 42.240 1.663 38.354 1.510 39.624	2.248 66.091 2.602 77.749 3.061 51.664(1) 2.034(1)	0.039 1 0.039 1.5 0.059	3/8 12.700 1/2 17.463	11	5590 36600 8220	3660 22700 5110		4370 27100 6090	2530 14500 3250
406 007 107 207 307 407 008	30 1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	72 2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346 80	19 0.7480 23 0.9055 10 0.3937 14 0.5512	35.890 1.413 42.240 1.663 38.354 1.510 39.624	66.091 2.602 77.749 3.061 51.664(1) 2.034(1)	1 0.039 1.5 0.059	12.700 ½ 17.463		36600 8220	22700 5110	7	27100 6090	14500 3250
406 007 107 207 307 407 008	1.1811 30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	2.8346 90 3.5433 55 2.1654 62 2.4409 72 2.8346	0.7480 23 0.9055 10 0.3937 14 0.5512	1.413 42.240 1.663 38.354 1.510 39.624	2.602 77.749 3.061 51.664(1) 2.034(1)	0.039 1.5 0.059	1/2 17.463		8220	5110	7	6090	3250
007 107 207 307 407 008	30 1.1811 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	90 3.5433 55 2.1654 62 2.4409 72 2.8346	0.9055 10 0.3937 14 0.5512 17	42.240 1.663 38.354 1.510 39.624	3.061 51.664 ⁽¹⁾ 2.034 ⁽¹⁾	0.059	17.463						
007 107 207 307 407 008	35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	55 2.1654 62 2.4409 72 2.8346 80	10 0.3937 14 0.5512 17	38.354 1.510 39.624	51.664 ⁽¹⁾ 2.034 ⁽¹⁾		_		54700	32300	7	46300	25100
107 207 307 407 008	1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780 35 1.3780	2.1654 62 2.4409 72 2.8346 80	0.3937 14 0.5512 17	1.510 39.624	2.034(1)	0.6		9	12300	7270		10400	5650
107 207 307 407 008	35 1.3780 35 1.3780 35 1.3780 35 1.3780	62 2.4409 72 2.8346 80	14 0.5512 17	39.624			6.350	19	15200	11800	13	11800	8060
207 307 407 008	1.3780 35 1.3780 35 1.3780 35 1.3780	2.4409 72 2.8346 80	0.5512 17		5/.3/9	0.024	1/4		3410	2650		2650	1810
307 407 008	35 1.3780 35 1.3780 35 1.3780	72 2.8346 80	17	1.300	2.259	1 0.039	7.938 5/16	17	21400 4800	15900 3570	11	16000 3590	10300 2310
307 407 008	1.3780 35 1.3780 35 1.3780	2.8346 80		40.361	66.624	1	11.906		35100	23000		26700	15200
407	1.3780 35 1.3780		0.6693	1.589	2.623	0.039	15/32	12	7890	5160	8	6010	3420
407	35 1.3780		21	42.748	72.238	1.5	14.288	11	45300	28800	7	33500	18300
008	1.3780	3.1496	0.8268	1.683	2.844	0.059	9/16	- ''	10200	6480		7530	4120
008		100	25	47.244	87.757	1.5	18.256	10	64900	41000	7	51200	28700
		3.9370	0.9843	1.860	3.455	0.059	23/32		14600	9220		11500	6440
108	40 1.5748	62 2.4409	12 0.4724	43.358 1.707	58.649 ⁽¹⁾ 2.309 ⁽¹⁾	0.6 0.024	6.350	22	16400 3690	14000 3150	14	12200 2740	8890 2000
108	40	68	15	44.577	63.424	1	7.938		22800	18300		16800	11500
	1.5748	2.6772	0.5906	1.755	2.497	0.039	5/16	19	5130	4110	12	3770	2590
200	40	80	18	45.542	74.447	1	11.906	15	41000	30000	0	29100	17900
208	1.5748	3.1496	0.7087	1.793	2.931	0.039	15/32	15	9210	6750	9	6550	4020
308	40	90	23	48.133	81.864	1.5	15.875	12	58300	39400	7	48000	29300
	1.5748	3.5433	0.9055	1.895	3.223	0.059	5%		13100	8870	-	10800	6580
408	40 1.5748	110 4.3307	27 1.0630	55.880 2.200	94.107 3.705	2 0.079	19.844 25/32	10	75800 17000	48800 11000	7	52200 11700	30100 6770
	45	68	12	48.590	64.414 ⁽¹⁾	0.075	6.350		17100	15600		13100	10300
009	1.7717	2.6772	0.4724	1.913	2.536(1)	0.024	1/4	24	3840	3500	16	2940	2330
109	45	75	16	49.759	70.231	1	8.731	20	27900	23400	12	19900	14000
103	1.7717	2.9528	0.6299	1.959	2.765	0.039	11/32	20	6270	5270	12	4470	3140
209	45	85	19	50.419	79.578	1	12.700	14	43900	31800	9	32700	20400
	1.7717	3.3465 100	0.7480 25	1.985 53.001	3.133 91.999	0.039 1.5	17.463		9880 65400	7160 43700		7360 52800	4590 31700
309	45 1.7717	3.9370	0.9843	2.087	3.622	0.059	17.403	11	14700	9830	8	11900	7120
	45	120	29	60.884	104.115	2	20.638		87600	60000	_	70900	43600
409	1.7717	4.7244	1.1417	2.397	4.099	0.079	13/16	11	19700	13500	8	15900	9800
010	50	72	12	53.569	68.453 ⁽¹⁾	0.6	6.350	26	17800	17100	17	13400	11200
010	1.9685	2.8346	0.4724	2.109	2.695(1)	0.024	1/4	20	4000	3840	.,	3010	2510
110	50	80 2.1406	16	54.788	75.209	1 0.020	9.525	19	31700	26300	12	23300	16600
	1.9685 50	3.1496 90	0.6299 20	2.157 55.372	2.961 84.633	0.039 1	3/8 12.700		7120 46000	5910 34800		5240 35100	3730 23200
210	1.9685	3.5433	0.7874	2.180	3.332	0.039	1/2	15	10300	7820	10	7890	5210
010	50	110	27	59.715	100.279	2	19.050		76500	52200		61800	37800
310	1.9685	4.3307	1.0630	2.351	3.948	0.079	3/4	11	17200	11700	8	13900	8500
410	50	130	31	71.145	108.864	2	21.431	11	94500	65900	8	76400	47900
	1.9685	5.1181	1.2205	2.801	4.286	0.079	27/32		21200	14800	_	17200	10800
011	55 2.1654	80 3.1496	13 0.5118	60.071 2.365	74.930 2.950	1 0.039	7.938 5/16	24	25800 5790	24100 5430	15	18900 4240	15100 3390
	2.1654 55	3.149b 90	18	60.909	84.099	0.039	11.113		40500	33600		30900	22400
111	2.1654	3.5433	0.7087	2.398	3.311	0.039	7/16	18	9100	7550	12	6940	5030
211	55	100	21	62.128	92.888	1.5	14.288	15	56800	43900	10	43400	29200
211	2.1654	3.9370	0.8268	2.446	3.657	0.059	9/16	15	12800	9870	10	9750	6560
311	55	120	29	64.973	110.033	2	20.638	11	88400	61300	8	71500	44500
	2.1654	4.7244	1.1417	2.558	4.332	0.079	13/ ₁₆		19900	13800		16100	10000
411	55 2.1654	140 5.5118	33 1.2992	76.149 2.998	118.872 4.680	2 0.079	22.225	12	107000 24200	78600	8	82000	52400

 $^{^{(1)}}$ Reduce by 0.635 mm (0.025 in.) for fractured race HD bearings.

continued on next page

Reduce by 1.270 mm (0.050 in.) for fractured race HD bearings.
 Ball complement is normally one less than the number listed when non-metallic cages or separable HT and HJ bearings with modified cages for ball retention are specified.

R = maximum shaft or housing fillet radius that bearing corner will clear.

 $C_{\rm r}$ = ANSI/ABMA dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions). $C_{\rm or}$ = ANSI/ABMA static radial load rating.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE continued

	d	D	W	Mounting SI	nsions houlder Diameter	R		May Co	pacity Types H	Load R	atıngs	CONRAD Type	e HK
								IVIAX. Ga					1
Timken Size Code	Bore	Outside Diameter	Width	A Min. Shaft	S Max. Housing	Radius	Ball Diameter	Balls No. (3)	C, Dynamic Radial Capacity	C _{or} Static Radial Capacity	Balls No. (3)	C _r Dynamic Radial Capacity	C _{or} Static Radial Capacity
	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		Newtons lbs.	Newtons lbs.		Newtons lbs.	Newtons lbs.
012	60	85	13	65.024	79.959	1	7.938	25	26200	25400	16	19400	16200
012	2.3622	3.3465	0.5118	2.560	3.148	0.039	5/16	25	5890	5700	10	4370	3650
112	60 2.3622	95 3.7402	18 0.7087	65.837 2.592	89.154 3.510	0.039	11.113 7/16	19	41600 9360	36000 8090	12	30700 6890	22700 5100
	60	110	22	67.259	102.743	1.5	15.875		65700	50300		52500	35900
212	2.3622	4.3307	0.8661	2.648	4.045	0.059	5/8	14	14800	11300	10	11800	8070
312	60	130	31	70.231	119.786	2	22.225	11	101000	71300	8	81800	51800
	2.3622 60	5.1181 150	1.2205 35	2.765 81.128	4.716 128.854	0.079 2	⁷ / ₈ 23.019		22700 115000	16000 86000		18400 87700	11600 57300
412	2.3622	5.9055	1.3780	3.194	5.073	0.079	29/32	12	25800	19300	8	19700	12900
013	65	90	13	69.977	85.014	1	7.938	26	26500	26800	17	20000	17500
010	2.5591	3.5433	0.5118	2.755	3.347	0.039	5/16	20	5950	6020	- ''	4490	3930
113	65 2.5591	100 3.9370	18 0.7087	70.790 2.787	94.209 3.709	1 0.039	11.113 7/16	20	42800 9610	38300 8610	13	32100 7210	24900 5590
	65	120	23	72.593	112.420	1.5	17.463		78000	60700		62300	42800
213	2.5591	4.7244	0.9055	2.858	4.426	0.059	11/16	14	17500	13600	10	14000	9630
313	65	140	33	74.905	130.099	2	23.813	12	121000	89500	8	92700	59600
	2.5591	5.5118	1.2992	2.949	5.122	0.079	15/16		27300	20100		20800	13400
413	65 2.5591	160 6.2992	37 1.4587	86.131 3.391	138.862 5.467	2 0.079	23.813 15/16	13	129000 29000	101000 22600	8	101000 22700	69500 15600
014	70	100	16	75.260	94.742	1	9.525	0.4	35400	35000	10	27100	23300
014	2.7559	3.9370	0.6299	2.963	3.730	0.039	3/8	24	7970	7870	16	6090	5240
114	70	110	20	76.048	103.937	1	12.700	19	52900	47100	13	41000	32200
	2.7559 70	4.3307 125	0.7874 24	2.994 77.572	4.092 117.424	0.039 1.5	½ 17.463		11900 81500	10600 66000		9230 62200	7240 44000
214	2.7559	4.9213	0.9449	3.054	4.623	0.059	11/16	15	18300	14800	10	14000	9880
314	70	150	35	81.153	138.836	2	25.400	12	136000	102000	8	104000	68000
314	2.7559	5.9055	1.3780	3.195	5.466	0.079	1	12	30700	22900	0	23400	15300
414	70 2.7559	180 7.0866	42 1.6535	96.520 3.800	153.492 6.043	2.5 0.098	26.987 1½6	13	158000 35500	129000 28900	8	114000 25700	79100 17800
	75	105	1.0000	80.289	99.720	1	9.525		37000	38300		23700 27900	25000
015	2.9528	4.1339	0.6299	3.161	3.926	0.039	3/8	26	8330	8600	17	6270	5620
115	75	115	20	81.026	108.966	1	12.700	20	54300	50100	13	40700	32500
	2.9528	4.5276	0.7874	3.190	4.290	0.039	1/2		12200	11300		9160	7310
215	75 2.9528	130 5.1181	25 0.9843	82.550 3.250	122.428 4.820	1.5 0.059	26.987 1½6	16	85000 19100	71700 16100	10	62100 14000	44800 10100
015	75	160	37	86.436	148.565	2	26.987	10	149000	115000		113000	76900
315	2.9528	6.2992	1.4567	3.403	5.849	0.079	11/16	12	33400	25900	8	25500	17300
415	75	190	45	101.524	163.474	2.5	28.575	13	171000	144000	9	134000	99800
	2.9528 80	7.4803 110	1.7717 16	3.997 85.242	6.436 104.750	0.098 1	1½ 9.525		38400 37500	32400 40200		30100 27600	22400 25300
016	3.1496	4.3307	0.6299	3.356	4.124	0.039	3/8	27	8440	9030	17	6200	5680
116	80	125	22	86.081	118.923	1	14.288	19	65200	59800	13	50700	40900
110	3.1496	4.9213	0.8661	3.389	4.682	0.039	9/16	13	14700	13400	10	11400	9190
216	80 3.1496	140 5.5118	26 1.0236	89.383 3.519	130.607 5.142	2 0.079	19.050 3/4	16	99400 22300	85000 19100	10	72700 16300	53000 11900
	80	170	39	91.719	158.293	2	28.575		161000	130000		123000	86500
316	3.1496	6.6929	1.5354	3.611	6.232	0.079	11//8	12	36200	29100	8	27600	19400
416	80	200	48	106.528	173.482	2.5	30.162	13	184000	161000	9	144000	111000
	3.1496	7.8740	1.8898	4.194	6.830	0.098	13/16		41500	36200	-	32400	25000
017	85 3.3465	120 4.7244	18 0.7087	90.703 3.571	114.300 4.500	1 0.039	11.113 7/16	25	47800 10700	49900 11200	16	35500 7990	31900 7170
117	85	130	22	91.262	123.749	1	14.288	00	67100	63400	10	50300	41200
117	3.3465	5.1181	0.8661	3.593	4.872	0.039	9/16	20	15100	14300	13	11300	9270
217	85	150	28	94.513	140.487	2	20.638	15	110000	92800	10	84000	61800
	3.3465 85	5.9055 180	1.1024 41	3.721 98.450	5.531 166.802	0.079 2.5	13/ ₁₆ 28.575		24700 171000	20900 144000		18900 124000	13900 88700
317	3.3465	7.0866	1.6142	3.876	6.567	0.098	11/8	13	38400	32400	8	27800	19900
417	85	210	52	119.456	175.539	3	31.750	12	198000	178000	9	155000	123000
417	3.3465	8.2677	2.0472	4.703	6.911	0.118	11/4	13	44500	40100	g	34900	27700

 $^{^{\}rm (1)}$ Reduce by 0.635 mm (0.025 in.) for fractured race HD bearings.

 $^{^{(2)}}$ Reduce by 1.270 mm (0.050 in.) for fractured race HD bearings.

⁽³⁾ Ball complement is normally one less than the number listed when non-metallic cages or separable HT and HJ bearings with modified cages for ball retention are specified.

R = maximum shaft or housing fillet radius that bearing corner will clear. C_r = ANSI/ABMA dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions).

 $C_{or} = ANSI/ABMA$ static radial load rating.

• • • • Ball Bearings

	d	D	W B	Mounting St		R		Mey C-	nonity Types !!	Load R	atings	COMPAD To	, UV
	u	U	VV		noulder Diameter	n		Max. Ca	pacity Types H			CONRAD Type	
Timken Size Code	Bore	Outside Diameter	Width	A Min. Shaft	S Max. Housing	Radius	Ball Diameter	Balls No. (3)	C, Dynamic Radial Capacity	C _{or} Static Radial Capacity	Balls No. (3)	C _r Dynamic Radial Capacity	C _{or} Static Radial Capacity
	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		Newtons lbs.	Newtons lbs.		Newtons lbs.	Newtons lbs.
018	90	125	18	95.682	132.410	1	11.113	26	48600	52300	17	36600	34200
010	3.5433	4.9213	0.7087	3.767	5.213	0.039	7/16	20	10900	11800	17	8240	7690
118	90	140	24	97.587	149.149	1.5	15.875	20	81500	77800	13	61200	50500
	3.5433 90	5.5118 160	0.9449 30	3.842 100.863	5.872 176.251	0.059 2	5/8 22.225		18300 126000	17500 107000		13700 96000	11400 71400
218	3.5433	6.2992	1.1811	3.971	6.939	0.079	7/8	15	28300	24100	10	21600	16100
010	90	190	43	103.759	124.282	2.5	30.162	10	184000	161000		133000	98900
318	3.5433	7.4803	1.6929	4.085	4.893	0.098	13/16	13	41500	36200	8	30000	22200
418	90	225	54	124.460	190.551	3	34.925	12	214000	197000	8	163000	131000
110	3.5433	8.8583	2.1260	4.900	7.502	0.118	1%		48100	44200	-	36700	29500
019	95 3.7402	130	18 0.7087	100.711 3.965	124.282 4.893	1 0.039	11.113	28	50600	56700 12800	18	37700 8480	36400 8190
	95	5.1181 145	24	102.591	137.414	1.5	15.875		11400 83700	82300		60800	50900
119	3.7402	5.7087	0.9449	4.039	5.410	0.059	5/8	21	18800	18500	13	13700	11400
210	95	170	32	106.197	158.801	2	23.813	15	142000	122000	10	109000	81700
219	3.7402	6.6929	1.2598	4.181	6.252	0.079	15/16	15	32000	27500	10	24400	18400
319	95	200	45	109.068	185.928	2.5	31.750	13	198000	178000	8	143000	110000
	3.7402	7.8740	1.7717	4.294	7.320	0.098	11/4		44500	40100		32200	24600
419	95 3.7402	240 9.4488	55 2.1654	129.464 5.097	205.537 8.092	3 0.118	36.513 1 ⁷ / ₁₆	13	241000 54100	235000 52800	9	188000 42400	162000 36500
	100	140	2.1004	105.969	134.036	1	12.700		62200	68000		46800	44500
020	3.9370	5.5118	0.7874	4.172	5.277	0.039	1/2	26	14000	15300	17	10500	9990
120	100	150	24	107.442	142.545	1.5	15.875	21	83200	83600	14	63500	55300
120	3.9370	5.9055	0.9449	4.230	5.612	0.059	5/8	21	18700	18800	14	14300	12400
220	100	180	34	111.531	168.478	2	25.400	15	160000	139000	10	122000	92600
	3.9370	7.0866	1.3386	4.391	6.633	0.079	1		36000	31300		27500	20800
320	100 3.9370	215 8.4646	47 1.8504	115.976 4.566	199.009 7.835	2.5 0.098	34.925 1 ³ / ₈	12	214000 48200	197000 44300	8	163000 36700	131000 29500
	3.9370 100	250	1.8504 58	134.468	7.835 215.544	3	38.100		255000	256000		200000	177000
420	3.9370	9.8424	2.2835	5.294	8.486	0.118	1½	13	57400	57400	9	45000	39800
001	105	145	20	110.947	139.040	1	12.700	07	63300	71200	17	46400	44800
021	4.1339	5.7087	0.7874	4.368	5.474	0.039	1/2	27	14200	16000	17	10400	10100
121	105	160	26	114.859	150.139	2	17.463	21	99300	99600	13	72100	61700
121	4.1339	6.2992	1.0236	4.522	5.911	0.079	11/16		22300	22400		16200	13900
221	105	190	36	116.865	178.130	2	26.987	15	174000	157000	10	133000	104000
	4.1339 105	7.4803 225	1.4173 49	4.601 121.260	7.013 208.737	0.079 2.5	1½16 36.513		39200 228000	35200 215000		29900 174000	23500 143000
321	4.1339	8.8583	1.9291	4.774	8.218	0.098	17/16	12	51200	48400	8	39100	32300
	105	260	60	139.446	225.527	3	39.688		271000	278000	_	212000	192000
421	4.1339	10.2362	2.3622	5.490	8.879	0.118	19/16	13	60800	62400	9	47600	43200
022	110	150	20	115.926	144.069	1	12.700	28	64300	74200	18	47800	47600
022	4.3307	5.9055	0.7874	4.564	5.672	0.039	1/2	20	14400	16700	10	10800	10700
122	110	170	28	120.091	159.918	2	19.050	20	113000	112000	13	84700	73000
	4.3307	6.6929	1.1024 38	4.728	6.296	0.079	3/4		25400	25300		19100	16400
222	110 4.3307	200 7.8740	38 1.4961	122.199 4.811	187.782 7.393	2 0.079	28.575 11/8	15	189000 42400	176000 39500	10	144000 32400	117000 26200
	110	240	50	127.102	222.885	2.5	41.275		253000	245000		188000	156000
322	4.3307	9.4480	1.9685	5.004	8.775	0.098	15/8	11	57000	55100	7	42200	35100
422	110	280	65	144.475	245.542	3	42.862	12	301000	322000	0	236000	223000
422	4.3307	11.0236	2.5591	5.688	9.667	0.118	111/16	13	67700	72500	9	53000	50200
024	120	165	22	126.162	158.852	1	14.288	27	77900	90400	17	57200	56800
	4.7244	6.4961	0.8661	4.967	6.254	0.039	9/16		17500	20300		12900	12800
124	120 4.7244	7.0866	28 1 1024	130.124	169.875 6.688	0.079	19.050 3/4	22	119000 26800	125000 28200	14	88200 19800	79700
	4.7244 120	7.0866 215	1.1024 40	5.123 132.105	6.688 202.895	0.079 2	28.575		26800 197000	192000		19800 144000	17900 120000
224	4.7244	8.4646	1.5748	5.201	7.988	0.079	11/8	16	44200	43100	10	32300	26900
00.5	120	260	55	138.379	241.630	2.5	44.450	10	298000	311000	_	208000	181000
324	4.7244	10.2362	2.1654	5.448	9.513	0.098	13/4	12	67100	69900	7	46800	40800
424	120	310	72	162.408	267.589	4	47.625	13	349000	396000	9	273000	274000
744	4.7244	12.2047	2.8346	6.394	10.535	0.157	111//8	13	78400	89100	3	61400	61700

 $^{^{\}rm (1)}$ Reduce by 0.635 mm (0.025 in.) for fractured race HD bearings.

continued on next page

⁽²⁾ Reduce by 1.270 mm (0.050 in.) for fractured race HD bearings.

^[3] Ball complement is normally one less than the number listed when non-metallic cages or separable HT and HJ bearings with modified cages for ball retention are specified.

 $[\]boldsymbol{R}$ = maximum shaft or housing fillet radius that bearing corner will clear.

 $[\]rm C_r=ANSI/ABMA$ dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions).

Cor = ANSI/ABMA static radial load rating.

PART NUMBERS, DIMENSIONS AND LOAD RATINGS TABLE continued

	d	D	M Bo	Mounting SI	nsions ioulder Diameter	R		Max Ca	pacity Types H	Load R	acings	CONRAD Type	e HK
				A A	S			IVIAA. Ga	C,	C _{or}		C,	C _{or}
Timken Size Code	Bore	Outside Diameter	Width	Min. Shaft	Max. Housing	Radius	Ball Diameter	Balls No. (3)	Dynamic Radial Capacity	Static Radial Capacity	Balls No. (3)	Dynamic Radial Capacity	Static Radial Capacity
	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		Newtons lbs.	Newtons lbs.		Newtons lbs.	Newtons lbs.
	130	180	24	138.430	171.552	1.5	15.875		94500	111000		69500	69900
026	5.1181	7.0866	0.9449	5.450	6.754	0.059	5/8	27	21300	25000	17	15600	15700
	130	200	33	140.564	189.433	2	22.225		149000	153000		112000	99500
126	5.1181	7.8740	1.2992	5.534	7.458	0.079	7/8	20	33500	34400	13	25100	22400
	130	230	40	144.704	215.290	2.5	30.162	4-	220000	229000		165000	147000
226	5.1181	9.0551	1.5748	5.697	8.476	0.098	13/16	17	49600	51500	11	37100	33200
000	130	280	58	150.800	259.182	3	47.625	10	329000	358000	7	230000	209000
326	5.1181	11.0236	2.2835	5.937	10.204	0.118	111/8	12	73900	80500	7	51600	46900
400	130	340	78	172.415	297.586	4	52.388	10	398000	478000	10	334000	368000
426	5.1181	13.3858	3.0709	6.788	11.716	0.157	21/16	13	89500	108000	10	75200	82700
020	140	190	24	148.438	181.559	1.5	15.875	20	97900	120000	18	71300	74500
028	5.5118	7.4803	0.9449	5.844	7.148	0.059	5/8	29	22000	27000	10	16000	16700
128	140	210	33	150.647	199.365	2	22.225	22	157000	172000	14	116000	108000
120	5.5118	8.2677	1.2992	5.931	7.849	0.079	7/8	22	35400	38600	14	26200	24400
228	140	250	42	155.931	234.061	2.5	33.337	16	244000	261000	10	178000	163000
220	5.5118	9.8425	1.6535	6.139	9.215	0.098	15/16	10	54900	58600	10	40100	36600
328	140	300	62	161.366	278.638	3	50.800	12	360000	408000	8	275000	272000
	5.5118	11.8110	2.4409	6.353	10.970	0.118	2	12	81000	91800		61800	61100
428	140	360	82	182.397	317.602	4	55.563	13	433000	539000	11	387000	456000
.20	5.5118	14.1732	3.2283	7.181	12.504	0.157	23/16		97200	121000		87000	102000
030	150	210	28	159.944	200.050	2	19.050	26	129000	153000	16	93300	94100
	5.9055	8.2677	1.1024	6.297	7.876	0.079	3/4		29000	34400		21000	21200
130	150	225	35	161.519	213.487	2	22.225	23	160000	181000	15	121000	118000
	5.9055	8.8583	1.3780	6.359	8.405	0.079	7/8		36000	40700		27100	26500
230	150	270	45	166.649	253.340	2.5	36.513	16	277000	312000	10	203000	194000
	5.9055	10.6299	1.7717	6.561	9.974	0.098	17/16		62400	70100		45600	43700
032	160 6.2992	220 8.6614	28 1.1024	169.875 6.688	210.134 8.273	2 0.079	19.050 3/4	27	131000 29400	161000 36100	17	96100 21600	101000 22700
	160	240	38	172.110	227.889	2	25.400		200000	223000		148000	142000
132	6.2992	9.4488	1.4961	6.776	8.972	0.079	25.400	22	45000	50100	14	33300	31800
	160	290	48	177.470	272.542	2.5	41.275		316000	367000		225000	220000
232	6.2992	11.4173	1.8898	6.987	10.730	0.098	15/8	15	71000	82500	9	50500	49300
	170	230	28	179.908	220.091	2	19.050		136000	173000		98700	107000
034	6.6929	9.0551	1.1024	7.083	8.665	0.079	3/4	29	30500	38900	18	22200	24100
	170	260	42	182.677	247.320	2	28.575		230000	266000		167000	165000
134	6.6929	10.2362	1.6535	7.192	9.737	0.079	11/8	21	51700	59900	13	37600	37100
	180	250	33	190.475	239.522	2	22.225		174000	218000		128000	137000
036	7.0866	9.8425	1.2992	7.499	9.430	0.079	7/8	27	39000	48900	17	28700	30700
	180	280	46	192.634	267.360	2	28.575		235000	283000		174000	180000
136	7.0866	11.0236	1.8110	7.584	10.526	0.079	11//8	22	52800	63700	14	39100	40500
00-	190	260	33	200.406	249.580	2	22.225		176000	227000	4-	126000	138000
038	7.4803	10.2362	1.2992	7.890	9.826	0.079	7/8	28	39700	51000	17	28400	31000
100	190	290	46	202.895	277.114	2	30.162	20	254000	315000	14	188000	200000
138	7.4803	11.4173	1.8110	7.988	10.910	0.079	13/16	22	57100	70700	14	42200	45000
040	200	280	38	211.887	268.097	2	25.400	26	216000	272000	16	157000	167000
040	7.8740	11.0236	1.4961	8.342	10.555	0.079	1	26	48700	61200	16	35200	37600
044	220	300	38	231.800	288.188	2	25.400	28	224000	297000	18	167000	191000
044	8.6614	11.8110	1.4961	9.126	11.346	0.079	1	20	50300	66700	10	37500	42800

 $^{^{\}mbox{\scriptsize (1)}}$ Reduce by 0.635 mm (0.025 in.) for fractured race HD bearings.

 $^{^{(2)}}$ Reduce by 1.270 mm (0.050 in.) for fractured race HD bearings.

⁽³⁾ Ball complement is normally one less than the number listed when non-metallic cages or separable HT and HJ bearings with modified cages for ball retention are specified.

 $[\]boldsymbol{R} = \text{maximum}$ shaft or housing fillet radius that bearing corner will clear.

 $[\]rm C_r=ANSI/ABMA$ dynamic radial load rating (33½ RPM for 500 hours and 90 percent survival, equivalent to 1000000 inner ring revolutions).

Cor = ANSI/ABMA static radial load rating.

Engineering Data

TOLERANCES

All bearings described in this design guide can be manufactured to ISO "Normal," 6, 5, 4 (ANSI/ABMA 1, 3, 5 or 7) tolerances. Generally, ISO 5 (ANSI/ABMA 5) is the preferred tolerance class for high-reliability aircraft systems. ISO 4 and 2 (ANSI/ABMA classes 7 and 9) may be specified where closer mounting tolerances and runouts are essential for precise position control. Their performance is otherwise similar to ISO 5 (ANSI/ABMA class 5). ISO 4 (ANSI/ABMA class 7) is normally applied only to ball bearings, although roller bearings can be supplied. ISO 2 (ANSI/ABMA class 9)is applicable to ball bearings only.

ISO "Normal" and 6 (ANSI/ABMA 1 and 3) are generally used in industrial and less critical aircraft accessory applications. To facilitate selection, the tolerance charts on the following pages summarize mean bore, outside diameter, width tolerance and maximum radial runout of each ring for all classes. Please refer to ANSI/ABMA Standard 20 for a complete table of all dimensions.

ISO 492 is equivalent to ANSI/ABMA Standard 20.

HOW TO SPECIFY

ANSI/ABMA precision tolerance levels 1 through 9 are indicated in Timken Aerospace part numbers by the suffixes P1, P3, P5 or P9.

INNER RING TOLERANCES

			Mea	ın Bore Dian	neter			Bore Di	ametral Tap	er, Max.			Ring '	Width	
			(+0.0000 t	o minus val	ue below)							(+0.	0000 to min	us value bel	ow)
	ore meter											Single	Bearing	Preloade Bea	d Single ring
			ISO and	ANSI/ABMA	A Classes			ISO and	ANSI/ABMA	A Classes		ISO and Al			NSI/ABMA ses
Over	Included	Normal	6	5	4	2	Normal	6	5	4	2	Normal, 6	5, 4, 2	Normal, 6	5, 4, 2
over	Iliciuaea	1	3	5	7	9	1	3	5	7	9	1, 3	5, 7, 9	1, 3	5, 7, 9
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.
2.5	10	0.008	0.007	0.005	0.004	0.0025	0.006	0.005	0.003	0.002	0.0015	0.120	0.040	0.250	0.250
0.0984	0.3937	0.0003	0.0003	0.0002	0.00015	0.0001	0.00025	0.0002	0.0001	0.0001	0.00005	0.0047	0.0016	0.0098	0.0098
10	18	0.008	0.007	0.005	0.004	0.0025	0.006	0.005	0.003	0.002	0.0015	0.120	0.080	0.250	0.250
0.3937	0.7087	0.0003	0.0003	0.0002	0.00015	0.0001	0.00025	0.0002	0.0001	0.0001	0.00005	0.0047	0.0031	0.0098	0.0098
18	30	0.010	0.008	0.006	0.005	0.0025	0.008	0.006	0.003	0.0025	0.0015	0.120	0.120	0.250	0.250
0.7087	1.1811	0.0004	0.0003	0.00025	0.0002	0.0001	0.0003	0.00025	0.0001	0.0001	0.00005	0.0047	0.0047	0.0098	0.0098
30	50	0.012	0.010	0.008	0.006	0.0025	0.009	0.008	0.004	0.003	0.0015	0.120	0.120	0.250	0.250
1.1811	1.9685	0.00045	0.0004	0.0003	0.00025	0.0001	0.00035	0.0003	0.00015	0.0001	0.00005	0.0047	0.0047	0.0098	0.0098
50	80	0.015	0.012	0.009	0.007	0.004	0.011	0.009	0.005	0.0035	0.002	0.150	0.150	0.380	0.250
1.9685	3.1496	0.0006	0.00045	0.00035	0.0003	0.00015	0.00045	0.00035	0.0002	0.00015	0.0001	0.0059	0.0059	0.0150	0.0098
80	120	0.020	0.015	0.010	0.008	0.005	0.015	0.011	0.005	0.004	0.0025	0.200	0.200	0.380	0.380
3.1496	4.7244	0.0008	0.0006	0.0004	0.0003	0.0002	0.0006	0.00045	0.0002	0.00015	0.0001	0.0079	0.0079	0.0150	0.0150
120	150	0.025	0.018	0.013	0.010	0.007	0.019	0.014	0.007	0.005	0.0035	0.250	0.250	0.500	0.380
4.7244	5.9055	0.0010	0.0007	0.0005	0.0004	0.0003	0.00075	0.00055	0.0003	0.0002	0.00015	0.0098	0.0098	0.0197	0.0150
150	180	0.025	0.018	0.013	0.010	0.007	0.019	0.014	0.007	0.005	0.0035	0.250	0.250	0.500	0.380
5.9055	7.0866	0.0010	0.0007	0.0005	0.0004	0.0003	0.00075	0.00055	0.0003	0.0002	0.00015	0.0098	0.0098	0.0197	0.0150
180	250	0.030	0.022	0.015	0.012	0.008	0.023	0.017	0.008	0.006	0.004	0.300	0.300	0.500	0.500
7.0866	9.8425	0.0012	0.00085	0.0006	0.00045	0.0003	0.0009	0.00065	0.0003	0.00025	0.00015	0.0118	0.0118	0.0197	0.0197
250	315	0.035	0.025	0.018	-	-	0.026	0.019	0.009	-	-	0.350	0.350	0.500	0.500
9.8425	12.4016	0.0014	0.0010	0.0007	-	-	0.0010	0.00075	0.00035	-	-	0.0138	0.0138	0.0197	0.0197
315	400	0.040	0.030	0.023	-	-	0.030	0.023	0.012	-	-	0.400	0.040	0.630	0.630
12.4016	15.7480	0.0016	0.0012	0.0009	-	-	0.0012	0.0009	0.00045	-	-	0.0157	0.0157	0.0248	0.0248
400	500	0.045	0.035	-	-	-	0.034	0.026	-	-	-	0.450	-	-	-
15.7480	19.6850	0.0018	0.0014	-	-	-	0.0013	0.0010	-	-	-	0.0177	-	-	-
500	630	0.050	0.040	-	-	-	0.038	0.030	-	-	-	0.500	-	-	-
19.6850	24.8031	0.0020	0.0016	-	-	-	0.0015	0.0012	-	-	-	0.0197	-	-	-
630	800	0.075	-	-	-	-	-	-	-	-	-	0.750	-	-	-
24.8031	31.4961	0.0030	-	-	-	-	-	-	-	-	-	0.0295	-	-	-

	ore	В		metral Rou 1900) Diame	ndness, Ma eter ⁽¹⁾	x.	Во		metral Rou iameter Se	ndness, Ma ries ⁽¹⁾	ıx.	В		metral Rou 00 Diamete		ıx.
Dian	neter		ISO and A	ANSI/ABM/	A Classes			ISO and A	ANSI/ABM	A Classes			ISO and A	ANSI/ABM/	A Classes	
		Normal	6	5	4	2	Normal	6	5	4	2	Normal	6	5	4	2
Over	Included	1	3	5	7	9	1	3	5	7	9	1	3	5	7	9
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.
2.5	10	0.010	0.009	0.005	0.004	0.0025	0.008	0.007	0.004	0.003	0.0025	0.006	0.005	0.004	0.003	0.0025
0.0984	0.3937	0.0004	0.00035	0.0002	0.00015	0.0001	0.0003	0.0003	0.00015	0.0001	0.0001	0.00025	0.0002	0.00015	0.0001	0.0001
10	18	0.010	0.009	0.005	0.004	0.0025	0.008	0.007	0.004	0.003	0.0025	0.006	0.005	0.004	0.003	0.0025
0.3937	0.7087	0.0004	0.00035	0.0002	0.00015	0.0001	0.0003	0.0003	0.00015	0.0001	0.0001	0.00025	0.0002	0.00015	0.0001	0.0001
18	30	0.013	0.010	0.006	0.005	0.0025	0.010	0.008	0.005	0.004	0.0025	0.008	0.006	0.005	0.004	0.0025
0.7087	1.1811	0.0005	0.0004	0.00025	0.0002	0.0001	0.0004	0.0003	0.0002	0.00015	0.0001	0.0003	0.00025	0.0002	0.00015	0.0001
30	50	0.015	0.013	0.008	0.006	0.0025	0.012	0.010	0.006	0.005	0.0025	0.009	0.008	0.006	0.005	0.0025
1.1811	1.9685	0.0006	0.0005	0.0003	0.00025	0.0001	0.00045	0.0004	0.00025	0.0002	0.0001	0.00035	0.0003	0.00025	0.0002	0.0001
50	80	0.019	0.015	0.009	0.007	0.004	0.019	0.015	0.007	0.005	0.004	0.011	0.009	0.007	0.005	0.004
1.9685	3.1496	0.00075	0.0006	0.00035	0.0003	0.00015	0.00075	0.0006	0.0003	0.0002	0.00015	0.00045	0.00035	0.0003	0.0002	0.00015
80	120	0.025	0.019	0.010	0.008	0.005	0.025	0.019	0.008	0.006	0.005	0.015	0.011	0.008	0.006	0.005
3.1496	4.7244	0.0010	0.00075	0.0004	0.0003	0.0002	0.0010	0.00075	0.0003	0.00025	0.0002	0.0006	0.00045	0.0003	0.00025	0.0002
120	150	0.031	0.023	0.013	0.010	0.007	0.031	0.023	0.010	0.008	0.007	0.019	0.014	0.010	0.008	0.007
4.7244	5.9055	0.0012	0.0009	0.0005	0.0004	0.0003	0.0012	0.0009	0.0004	0.0003	0.0003	0.00075	0.00055	0.0004	0.0003	0.0003
150	180	0.031	0.023	0.013	0.010	0.007	0.031	0.023	0.010	0.008	0.007	0.019	0.014	0.010	0.008	0.007
5.9055	7.0866	0.0012	0.0009	0.0005	0.0004	0.0003	0.0012	0.0009	0.0004	0.0003	0.0003	0.00075	0.00055	0.0004	0.0003	0.0003
180	250	0.038	0.028	0.015	0.012	0.008	0.038	0.028	0.012	0.009	0.008	0.023	0.017	0.012	0.009	0.008
7.0866	9.8425	0.0015	0.0011	0.0006	0.00045	0.0003	0.0015	0.0011	0.00045	0.00035	0.0003	0.0009	0.00065	0.00045	0.00035	0.0003
250	315	0.044	0.031	0.018	-	-	0.044	0.031	0.014	-	-	0.026	0.019	0.014	-	-
9.8425	12.4016	0.0017	0.0012	0.0007	-	-	0.0017	0.0012	0.00055	-	-	0.0010	0.00075	0.00055	-	-
315	400	0.050	0.038	0.023	-	-	0.050	0.038	0.018	-	-	0.030	0.023	0.018	-	-
12.4016	15.7480	0.0020	0.0015	0.0009	-	-	0.0020	0.0015	0.0007	-	-	0.0012	0.0009	0.0007	-	-
400	500	0.056	0.044	-	-	-	0.056	0.044	-	-	-	0.034	0.026	-	-	-
15.7480	19.6850	0.0022	0.0017	-	-	-	0.0022	0.0017	-	-	-	0.0013	0.0010	-	-	-
500	630	0.063	0.050	-	-	-	0.063	0.050	-	-	-	0.038	0.030	-	-	-
19.6850	24.8031	0.0025	0.0020	_	-	-	0.0025	0.0020	_	-	-	0.0015	0.0012	-	_	-
630	800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24.8031	31.4961	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ For ANSI/ABMA Classes 7 and 9 (ISO 4 and 2), no individual 2point readings outside the limits for mean diameter (pg. 34) are allowed.

INNER RING TOLERANCES continued

Ве	ore		Ra	dial Runout, Ma	ax.			А	xial Runout, Ma	x.	
Diar	neter		ISO an	d ANSI/ABMA (Classes			ISO an	d ANSI/ABMA	Classes	
		Normal	6	5	4	2	Normal	6	5	4	2
Over	Included	1	3	5	7	9	1	3	5	7	9
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.
2.5	10	0.010	0.006	0.004	0.0025	0.0015	0.020	0.015	0.007	0.003	0.0015
0.0984	0.3937	0.0004	0.00025	0.00015	0.0001	0.00005	0.0008	0.0006	0.0003	0.0001	0.00005
10	18	0.010	0.007	0.004	0.0025	0.0015	0.020	0.020	0.007	0.003	0.0015
0.3937	0.7087	0.0004	0.0003	0.00015	0.0001	0.00005	0.0008	0.0008	0.0003	0.0001	0.00005
18	30	0.013	0.008	0.004	0.003	0.0025	0.025	0.020	0.008	0.004	0.0025
0.7087	1.1811	0.0005	0.0003	0.00015	0.0001	0.0001	0.0010	0.0008	0.0003	0.00015	0.0001
30	50	0.015	0.010	0.005	0.004	0.0025	0.030	0.020	0.008	0.004	0.0025
1.1811	1.9685	0.0006	0.0004	0.0002	0.00015	0.0001	0.0012	0.0008	0.0003	0.00015	0.0001
50	80	0.020	0.010	0.005	0.004	0.0025	0.030	0.025	0.008	0.005	0.0025
1.9685	3.1496	0.0008	0.0004	0.0002	0.00015	0.0001	0.0012	0.0010	0.0003	0.0002	0.0001
80	120	0.025	0.013	0.006	0.005	0.0025	0.035	0.025	0.009	0.005	0.0025
3.1496	4.7244	0.0010	0.0005	0.00025	0.0002	0.0001	0.0014	0.0010	0.00035	0.0002	0.0001
120	150	0.030	0.018	0.008	0.006	0.0025	0.040	0.030	0.010	0.007	0.0025
4.7244	5.9055	0.0012	0.0007	0.0003	0.00025	0.0001	0.0016	0.0012	0.0004	0.0003	0.0001
150	180	0.030	0.018	0.008	0.006	0.005	0.040	0.030	0.010	0.007	0.005
5.9055	7.0866	0.0012	0.0007	0.0003	0.00025	0.0002	0.0016	0.0012	0.0004	0.0003	0.0002
180	250	0.040	0.020	0.010	0.008	0.005	0.045	0.035	0.013	0.008	0.005
7.0866	9.8425	0.0016	0.0008	0.0004	0.0003	0.0002	0.0018	0.0014	0.0005	0.0003	0.0002
250	315	0.050	0.025	0.013	-	-	0.055	0.040	0.015	-	-
9.8425	12.4016	0.0020	0.0010	0.0005	-	-	0.0022	0.0016	0.0006	-	-
315	400	0.060	0.030	0.015	-	-	0.065	0.045	0.020	-	-
12.4016	15.7480	0.0024	0.0012	0.0006	-	-	0.0026	0.0018	0.0008	-	-
400	500	0.065	0.035	-	-	-	0.075	0.050	-	-	-
15.7480	19.6850	0.0026	0.0014	-	-	-	0.0030	0.0020	-	-	-
500	630	0.070	0.040	-	-	-	0.090	0.055	-	-	-
19.6850	24.8031	0.0028	0.0016	-	-	-	0.0035	0.0022	-	-	-
630	800	0.080	-	-	-	-	0.100	-	-	-	-
24.8031	31.4961	0.0031	-	-	-	-	0.0039	-	-	-	-

P.	ore		Face	to Bore Runout,	Max.			Face Parallelism, Max.						
	neter		ISO an	d ANSI/ABMA (Classes			ISO an	d ANSI/ABMA (Classes				
0	ll-d-d	Normal	6	5	4	2	Normal	6	5	4	2			
Over	Included	1	3	5	7	9	1	3	5	7	9			
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.			
2.5	10	ND	ND	0.007	0.003	0.0015	0.015	0.015	0.005	0.0025	0.0015			
0.0984	0.3937	NR	NR	0.0003	0.0001	0.00005	0.0006	0.0006	0.0002	0.0001	0.00005			
10	18			0.007	0.003	0.0015	0.020	0.020	0.005	0.0025	0.0015			
0.3937	0.7087	NR	NR	0.0003	0.0001	0.00005	0.0008	0.0008	0.0002	0.0001	0.00005			
18	30			0.008	0.004	0.0015	0.020	0.020	0.005	0.0025	0.0015			
0.7087	1.1811	NR	NR	0.0003	0.00015	0.00005	0.0008	0.0008	0.0002	0.0001	0.00005			
30	50			0.008	0.004	0.0015	0.020	0.020	0.005	0.003	0.0015			
1.1811	1.9685	NR	NR	0.0003	0.00015	0.00005	0.0008	0.0008	0.0002	0.0001	0.00005			
50	80			0.008	0.005	0.0015	0.025	0.025	0.006	0.004	0.0015			
1.9685	3.1496	NR	NR	0.0003	0.0002	0.00005	0.0010	0.0010	0.00025	0.00015	0.00005			
80	120			0.009	0.005	0.0025	0.025	0.025	0.007	0.004	0.0025			
3.1496	4.7244	NR	NR	0.00035	0.0002	0.0001	0.0010	0.0010	0.0003	0.00015	0.0001			
120	150			0.010	0.006	0.0025	0.030	0.030	0.008	0.005	0.0025			
4.7244	5.9055	NR	NR	0.0004	0.00025	0.0001	0.0012	0.0012	0.0003	0.0002	0.0001			
150	180			0.010	0.006	0.004	0.030	0.030	0.008	0.005	0.004			
5.9055	7.0866	NR	NR	0.0004	0.00025	0.00015	0.0012	0.0012	0.0003	0.0002	0.00015			
180	250			0.011	0.007	0.005	0.030	0.030	0.010	0.006	0.005			
7.0866	9.8425	NR	NR	0.00045	0.0003	0.0002	0.0012	0.0012	0.0004	0.00025	0.0002			
250	315			0.013	-	-	0.035	0.035	0.013	-	-			
9.8425	12.4016	NR	NR	0.0005	-	-	0.0014	0.0014	0.0005	-	-			
315	400			0.015	-	-	0.040	0.040	0.015	-	-			
12.4016	15.7480	NR	NR	0.0006	-	-	0.0016	0.0016	0.0006	-	-			
400	500	-	-	-	-	-	0.050	0.045	-	-	-			
15.7480	19.6850	-	-	-	-	-	0.0020	0.0018	-	-	-			
500	630	-	-	-	-	-	0.060	0.050	-	-	-			
19.6850	24.8031	_	-	-	-	-	0.0024	0.0020	_	-	-			
630	800	-	-	-	-	-	0.070	-	-	-	-			
24.8031	31.4961	_	-	-	-	-	0.0028	-	-	-	-			

 $NR = no \ standardized \ requirement \ for \ this \ feature.$

AEROSPACE DESIGN GUIDE • •

OUTER RING TOLERANCES

				an O.D. Dian o minus val				O.D. Dia	ametral Tap	er, Max.		Ring Wid	lth (+0.0000 1	to minus valu	e below)
Diar	side neter .D.)							100				Single I	Bearing	Preloade Bea	ed Single ring
			ISO and	ANSI/ABMA	A Classes			ISO and	ANSI/ABM <i>i</i>	A Classes		ISO and Al Clas	NSI/ABMA sses	ISO and Al Clas	
Over	Included	Normal	6	5	4	2	Normal	6	5	4	2	Normal, 6	5, 4, 2	Normal, 6	5, 4, 2
		1	3	5	7	9	1	3	5	7	9	1, 3	5, 7, 9	1, 3	5, 7, 9
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.
18	30	0.009	0.008	0.006	0.005	0.004	0.007	0.006	0.003	0.0025	0.002				
0.7087	1.1811	0.00035	0.0003	0.00025	0.0002	0.00015	0.0003	0.00025	0.0001	0.0001	0.0001				
30	50	0.011	0.009	0.007	0.006	0.004	0.008	0.007	0.004	0.003	0.002				
1.1811	1.9685	0.00045	0.00035	0.0003	0.00025	0.00015	0.0003	0.0003	0.00015	0.0001	0.0001				
50	80	0.013	0.011	0.009	0.007	0.004	0.010	0.008	0.005	0.0035	0.002				
1.9685	3.1496	0.0005	0.00045	0.00035	0.0003	0.00015	0.0004	0.0003	0.0002	0.00015	0.0001				
80	120	0.015	0.013	0.010	0.008	0.005	0.011	0.010	0.005	0.004	0.0025	-			
3.1496	4.7244	0.0006	0.0005	0.0004	0.0003	0.0002	0.00045	0.0004	0.0002	0.00015	0.0001				
120	150	0.018	0.015	0.011	0.009	0.005	0.014	0.011	0.006	0.005	0.0025				
4.7244	5.9055	0.0007	0.0006	0.00045	0.00035	0.0002	0.00055	0.00045	0.00025	0.0002	0.0001				
150	180	0.025	0.018	0.013	0.010	0.007	0.019	0.014	0.007	0.005	0.0035	-			
5.9055	7.0866	0.0010	0.0007	0.0005	0.0004	0.0003	0.00075	0.00055	0.0003	0.0002	0.00015				
180	250	0.030	0.020	0.015	0.011	0.008	0.023	0.015	0.008	0.006	0.004			ical to r ring	
7.0866	9.8425	0.0012	0.0008	0.0006	0.00045	0.0003	0.0009	0.0006	0.0003	0.00025	0.00015		of s	same aring	
250	315	0.035	0.025	0.018	0.013	0.008	0.026	0.019	0.009	0.007	0.004	-		9	
9.8425	12.4016	0.0014	0.0010	0.0007	0.0005	0.0003	0.0010	0.00075	0.00035	0.0003	0.00015				
315	400	0.040	0.028	0.020	0.015	0.010	0.030	0.021	0.010	0.008	0.005	-			
12.4016	15.7480	0.0016	0.0011	0.0008	0.0006	0.0004	0.0012	0.00085	0.0004	0.0003	0.0002				
400	500	0.045	0.033	0.023	-	-	0.034	0.025	0.012	-	-	-			
15.7480	19.6850	0.0018	0.0013	0.0009	-	-	0.0013	0.0010	0.00045	-	-				
500	630	0.050	0.038	0.028	-	-	0.038	0.029	0.014	-	-				
19.6850	24.8032	0.0020	0.0015	0.0011	-	-	0.0015	0.0011	0.00055	-	-				
630	800	0.075	0.045	0.035	-	-	0.055	0.034	0.018	-	-				
24.8032	31.4961	0.0030	0.0018	0.0014	-	-	0.0022	0.0013	0.0007	-	-				
800	1000	0.100	0.060	-	-	-	0.075	0.045	-	-	-				
31.4961	39.3701	0.0039	0.0024	_	-	-	0.0030	0.0018	-	_	-				

Dian				netral Rour I) Diameter	idness, Ma Series (1)	x.	0		netral Rour iameter Se		x.	0	.D. 2pt Diar 200, 300, 4	netral Rour 00 Diamete		x.
(0.	.D.)		ISO Class	ses and AN	SI/ABMA			ISO Class	ses and AN	SI/ABMA		ISO and ANSI/ABMA Classes				
•		Normal	6	5	4	2	Normal	6	5	4	2	Normal	6	5	4	2
Over	Included	1	3	5	7	9	1	3	5	7	9	1	3	5	7	9
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.
18	30	0.012	0.010	0.006	0.005	0.004	0.009	0.008	0.005	0.004	0.004	0.007	0.006	0.005	0.004	0.004
0.7087	1.1811	0.00045	0.0004	0.00025	0.0002	0.00015	0.00035	0.0003	0.0002	0.00015	0.00015	0.0003	0.00025	0.0002	0.00015	0.00015
30	50	0.014	0.011	0.007	0.006	0.004	0.011	0.009	0.005	0.005	0.004	0.008	0.007	0.005	.0.005	0.004
1.1811	1.9685	0.00055	0.00045	0.0003	0.00025	0.00015	0.00045	0.00035	0.0002	0.0002	0.00015	0.0003	0.0003	0.0002	0.0002	0.00015
50	80	0.016	0.014	0.009	0.007	0.004	0.013	0.011	0.007	0.005	0.004	0.010	0.008	0.007	0.005	0.004
1.9685	3.1496	0.00065	0.00055	0.00035	0.0003	0.00015	0.0005	0.00045	0.0003	0.0002	0.00015	0.0004	0.0003	0.0003	0.0002	0.00015
80	120	0.019	0.016	0.010	0.008	0.005	0.019	0.016	0.008	0.006	0.005	0.011	0.010	0.008	0.006	0.005
3.1496	4.7244	0.00075	0.00065	0.0004	0.0003	0.0002	0.00075	0.00065	0.0003	0.00025	0.0002	0.00045	0.0004	0.0003	0.00025	0.0002
120	150	0.023	0.019	0.011	0.009	0.005	0.023	0.019	0.008	0.007	0.005	0.0014	0.011	0.008	0.007	0.005
4.7244	5.9055	0.0009	0.00075	0.00045	0.00035	0.0002	0.0009	0.00075	0.0003	0.0003	0.0002	0.00055	0.00045	0.0003	0.0003	0.0002
150	180	0.031	0.023	0.013	0.010	0.007	0.031	0.023	0.010	0.008	0.007	0.019	0.014	0.010	0.008	0.007
5.9055	7.0866	0.0012	0.0009	0.0005	0.0004	0.0003	0.0012	0.0009	0.0004	0.0003	0.0003	0.00075	0.00055	0.0004	0.0003	0.0003
180	250	0.038	0.025	0.015	0.011	0.008	0.038	0.025	0.011	0.008	0.008	0.023	0.015	0.011	0.008	0.008
7.0866	9.8425	0.0015	0.0010	0.0006	0.00045	0.0003	0.0015	0.0010	0.00045	0.0003	0.0003	0.0009	0.0006	0.00045	0.0003	0.0003
250	315	0.044	0.031	0.018	0.013	0.008	0.044	0.031	0.014	0.010	0.008	0.026	0.019	0.014	0.010	0.008
9.8425	12.4016	0.0017	0.0012	0.0007	0.0005	0.0003	0.0017	0.0012	0.00055	0.0004	0.0003	0.0010	0.00075	0.00055	0.0004	0.0003
315	400	0.050	0.035	0.020	0.015	0.010	0.050	0.035	0.015	0.011	0.010	0.030	0.021	0.015	0.011	0.010
12.4016	15.7480	0.0020	0.0014	0.0008	0.0006	0.0004	0.0020	0.0014	0.0006	0.00045	0.0004	0.0012	0.00085	0.0006	0.00045	0.0004
400	500	0.056	0.041	0.023	-	-	0.056	0.041	0.017	-	-	0.034	0.025	0.017	-	-
15.7480	19.6850	0.0022	0.0016	0.0009	-	-	0.0022	0.0016	0.00065	-	-	0.0013	0.0010	0.00065	-	-
500	630	0.063	0.048	0.028	-	-	0.063	0.048	0.021	-	-	0.038	0.029	0.021	-	-
19.6850	24.8032	0.0025	0.0019	0.0011	-	-	0.0025	0.0019	0.00085	-	-	0.0015	0.0011	0.00085	-	-
630	800	0.094	0.056	0.035	-	-	0.094	0.056	0.026	-	-	0.055	0.034	0.026	-	-
24.8032	31.4961	0.0037	0.0022	0.0014	-	-	0.0037	0.0022	0.0010	-	-	0.0022	0.0013	0.0010	-	-
800	1000	0.125	0.075	-	-	-	0.125	0.075	-	-	-	0.075	0.045	-	-	-
31.4961	39.3701	0.0049	0.0030	-	-	-	0.0049	0.0030	-	-	-	0.0030	0.0018	-	-	-

⁽¹⁾ For ANSI/ABMA Classes 7 and 9 (ISO 4 and 2), no individual 2point readings outside the limits for mean diameter (pg. 38) are allowed.

OUTER RING TOLERANCES continued

	side neter		Ra	dial Runout, Ma	ax.			А	xial Runout, Ma	x.	
	D.)		ISO an	d ANSI/ABMA C	Classes			ISO an	d ANSI/ABMA (Classes	
0	lu-lu-lu-d	Normal	6	5	4	2	Normal	6	5	4	2
Over	Included	1	3	5	7	9	1	3	5	7	9
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.
18	30	0.015	0.009	0.006	0.004	0.0025	0.025	0.015	0.008	0.005	0.0025
0.7087	1.1811	0.0006	0.00035	0.00025	0.00015	0.0001	0.0010	0.0006	0.0003	0.0002	0.0001
30	50	0.020	0.010	0.007	0.005	0.0025	0.030	0.020	0.008	0.005	0.0025
1.1811	1.9685	0.0008	0.0004	0.0003	0.0002	0.0001	0.0012	0.0008	0.0003	0.0002	0.0001
50	80	0.025	0.013	0.008	0.005	0.004	0.035	0.020	0.010	0.005	0.004
1.9685	3.1496	0.0010	0.0005	0.0003	0.0002	0.00015	0.0014	0.0008	0.0004	0.0002	0.00015
80	120	0.035	0.018	0.010	0.006	0.005	0.040	0.025	0.011	0.006	0.005
3.1496	4.7244	0.0014	0.0007	0.0004	0.00025	0.0002	0.0016	0.0010	0.00045	0.00025	0.0002
120	150	0.040	0.020	0.011	0.007	0.005	0.045	0.030	0.013	0.007	0.005
4.7244	5.9055	0.0016	0.0008	0.00045	0.0003	0.0002	0.0018	0.0012	0.0005	0.0003	0.0002
150	180	0.045	0.023	0.013	0.008	0.005	0.055	0.035	0.014	0.008	0.005
5.9055	7.0866	0.0018	0.0009	0.0005	0.0003	0.0002	0.0022	0.0014	0.00055	0.0003	0.0002
180	250	0.050	0.025	0.015	0.010	0.007	0.065	0.040	0.015	0.010	0.007
7.0866	9.8425	0.0020	0.0010	0.0006	0.0004	0.0003	0.0026	0.0016	0.0006	0.0004	0.0003
250	315	0.060	0.030	0.018	0.011	0.007	0.075	0.045	0.018	0.010	0.007
9.8425	12.4016	0.0024	0.0012	0.0007	0.00045	0.0003	0.0030	0.0018	0.0007	0.0004	0.0003
315	400	0.070	0.035	0.020	0.013	0.008	0.090	0.050	0.020	0.013	0.008
12.4016	15.7480	0.0028	0.0014	0.0008	0.0005	0.0003	0.0035	0.0020	0.0008	0.0005	0.0003
400	500	0.080	0.040	0.023	-	-	0.100	0.055	0.023	-	-
15.7480	19.6850	0.0031	0.0016	0.0009	-	-	0.0039	0.0022	0.0009	-	-
500	630	0.100	0.050	0.025	-	-	0.110	0.060	0.025	-	-
19.6850	24.8032	0.0039	0.0020	0.0010	-	-	0.0043	0.0024	0.0010	-	-
630	800	0.120	0.060	0.030	-	-	0.120	0.065	0.030	-	-
24.8032	31.4961	0.0047	0.0024	0.0012	-	-	0.0047	0.0026	0.0012	-	-
800	1000	0.140	0.075	-	-	-	0.125	0.070	-	-	-
31.4961	39.3701	0.0055	0.0030	-	-	-	0.0049	0.0028	-	-	-

• • • • • • • • • Engineering Data

Dian	side neter		0.D.	to Face Runout,	Max.			Fa	ce Parallelism, N	Max.			
(0.	.D.)		ISO an	d ANSI/ABMA (Classes			ISO and ANSI/ABMA Classes					
•		Normal	6	5	4	2	Normal	6	5	4	2		
Over	Included	1	3	5	7	9	1	3	5	7	9		
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.		
18	30			0.008	0.004	0.0015			0.005	0.0025	0.0015		
0.7087	1.1811	NR	NR	0.0003	0.00015	0.00005			0.0002	0.0001	0.00005		
30	50			0.008	0.004	0.0015			0.005	0.0025	0.0015		
1.1811	1.9685	NR	NR	0.0003	0.00015	0.00005			0.0002	0.0001	0.00005		
50	80			0.008	0.004	0.0015			0.006	0.003	0.0015		
1.9685	3.1496	NR	NR	0.0003	0.00015	0.00005			0.00025	0.0001	0.00005		
80	120			0.009	0.005	0.0025			0.008	0.004	0.0025		
3.1496	4.7244	NR	NR	0.00035	0.0002	0.0001			0.0003	0.00015	0.0001		
120	150			0.010	0.005	0.0025			0.008	0.005	0.0025		
4.7244	5.9055	NR	NR	0.0004	0.0002	0.0001			0.0003	0.0002	0.0001		
150	180	ND	ND	0.010	0.005	0.0025			0.008	0.005	0.0025		
5.9055	7.0886	NR	NR	0.0004	0.0002	0.0001			0.0003	0.0002	0.0001		
180	250	ND	ND	0.011	0.007	0.004	Identi inner	ring	0.010	0.007	0.004		
7.0866	9.8425	NR	NR	0.00045	0.0003	0.00015	of sa bea	ame ring	0.0004	0.0003	0.00015		
250	315	ND	ND	0.013	800.0	0.005			0.011	0.007	0.005		
9.8425	12.4016	NR	NR	0.0005	0.0003	0.0002			0.00045	0.0003	0.0002		
315	400	NR	NR	0.013	0.010	0.007			0.013	0.008	0.007		
12.4016	15.7480	INN	INK	0.0005	0.0004	0.0003			0.0005	0.0003	0.0003		
400	500	ND	ND	0.015	-	-			0.015	-	-		
15.7480	19.6850	NR	NR	0.0006	-	-			0.0006	-	-		
500	630	ND	ND	0.018	-	-			0.018	-	-		
19.6850	24.8032	NR	NR	0.0007	-	-			0.0007	-	-		
630	800	NR	NR	0.020	-	-			0.020	-	-		
24.8032	31.4961	INK	ININ	0.0008	-	-			0.0008	-	-		
800	1000	-	-	-	-	-			-	-	-		
31.4961	39.3701	-	-	-	-	-			-	-	-		

 $NR = no \ standardized \ requirement \ for \ this \ feature.$

NON-DESTRUCTIVE TESTING

In addition to the basic dimensional characteristics defined by ANSI/ABMA Standard 20, many aspects of quality and reliability assurance depend upon the integrity of the manufacturer as well as supplemental tests that are agreed upon in the final specification. Controls on finish, raceway waviness, lobing, roller-path flatness and many other minute variables are carefully defined as a function of tolerance level by Timken. Non-destructive testing techniques are used on a sample basis to help ensure reliability against cracks, material defects and grinding temper marks.

For critical bearings, 100-percent non-destructive testing using fluorescent penetrant, magnetic particle inspection, nital etch testing, Barkhausen noise testing or eddy current testing is available on a contract basis to help ensure reliability of all components.

MATERIALS AND OPERATING TEMPERATURES

STANDARD MATERIAL – HIGH CHROME 52100 BEARING STEEL (AMS 6440)

Unless otherwise indicated, all bearings listed in this design guide are manufactured from vacuum-degassed bearing-quality 52100 steel (AMS 6440). Rings and rolling elements are precision heat-treated to provide the uniform stable structure required for rolling bearings. ANSI/ABMA 3 (ISO class 6) and higher-precision bearings are stabilized typically with special tempers and sub-cooling cycles. This permits operating temperatures ranging from -54 to +177° C (-65° to +350° F) with a hardness of HRC 60 minimum on most standard configurations and HRC 58 minimum on more complex shapes or where higher temperature capability is required. Retained austenite is generally held to less than 4 percent.

SPECIAL MATERIALS

CEVM 52100 (AMS 6444) consumable electrode vacuum remelt improves reliability and fatigue life versus standard 52100. Timken generally recommends that, in an application critical enough to require CEVM 52100, the slight additional cost of VIM-VAR M-50 is more than justified by its many additional benefits.

VIM-VAR 52100 (AMS 6444) vacuum induction melt, followed by a vacuum arc remelt, further improves reliability and fatigue life. Hardness and heat-treatment are similar to other 52100 grades.

VIM-VAR M-50 HIGH-SPEED (AMS 6491)

Vacuum induction melt-vacuum arc remelt (VIM-VAR) M-50 has proven to be the most satisfactory advanced performance

material for demanding aircraft engine and accessory applications. VIM-VAR M-50 provides four specific areas of improved performance:

- M-50 permits operation at or exposure to temperatures up to 427° C (800° F) with dimensional size change controlled within standard limits. Retained austenite is held to 3 percent maximum by the heat-treatment process.
- 2) M-50 provides extended fatigue life in temperature ranges above 204° C (400° F) common to many aircraft applications. It compensates for application conditions that may cause severe reduction in experienced life, e.g., rapid acceleration, marginal housing or shaft support, differential temperatures, misalignment and other unavoidable conditions.
- 3) M-50 extends life in "oil out" or marginal lubricant conditions. Under these conditions, surface temperatures immediately rise, causing surface tempering, deformation and seizure. Even after exposure to temperatures as high as 593° C (1100° F), M-50 will not soften significantly (compared to 260° C [500° F] for 52100), providing an extra margin of operable life.
- M-50 moly-carbides provide greater hardness to reduce fretting and wear under slow-speed or oscillating conditions.

VIM-VAR M-50 NIL (AMS 6278)

A carburized case-hardened variation of M-50, VIM-VAR M-50 NIL (AMS 6278) provides improved fracture toughness due to its softer core. Other properties of conventional M-50, including high-temperature stability and rolling contact fatigue life, are maintained, with the exception of retained austenite, typically 6 percent max. Potential applications include ultrahigh-speed (2.4 million dN and above) mainshaft and other applications limited by low fracture toughness.

440C STAINLESS STEEL (AMS 5880)

A 16-percent chromium steel common to miniature and instrument bearings, 440C stainless steel (AMS 5880) also is used in special metric bearings requiring corrosion resistance. Standard tempering and subcooling cycles provide capability for operation at temperatures up to 190° C (375° F). Optional high-temperature draw cycles allow operation at temperatures up to 425° C (800° F); however, this option reduces corrosion resistance. Typical applications include large instrument bearings, reactor control bearings, bearings immersed in jet fuel and lightly loaded high-temperature thrust-reverser controls.

Modified 440C alloys, similar to 440C, contain additional molybdenum to improve hot hardness at high tempering temperatures for applications requiring corrosion and oxidation resistance. In some applications, they provide the best features of both 440C and M-50; however, their high alloy content has led to unpredictable variations in experienced fatigue life. Examples of modified 440C is BG-42® (AMS 5749).

• • • • • • • Engineering Data

BG-42® (AMS 5749) VIM-VAR

A high-performance Cr-Mo-V alloy, BG-42 (AMS 5749) VIM-VAR is ideal for bearing applications where a hardenable martensitic stainless steel is needed for corrosion resistance, and has hot hardness better than 440C. It performs similarly to M-50, but with added properties described above. Multiple remelting enhances material cleanliness and provides a more reliable performance and fatigue life. It is suitable for use where application temperatures are up to 482° C (900° F).

PYROWEAR 675® (AMS 5930)

A carburizing grade of stainless steel, Pyrowear 675[®] (AMS 5930) is a corrosion-resistant steel developing a HRC 60 case with a tough ductile core. It has corrosion resistance equivalent to 440C steel.

CERAMIC ROLLING ELEMENTS

Ceramic balls and rollers (silicon nitride) are available for hybrid bearings. This high-performance ceramic has proved beneficial for certain high-temperature, high-corrosive environments. When corrosive environments, exceptionally non-typical bearing temperatures or very high speeds are anticipated in a design, it may be useful to apply a "hybrid" construction. Properly designed ring and cage materials can be mated with ceramic rolling elements – balls or rollers – to obtain the maximum benefits of each. Discuss these special applications with a Timken engineer for guidance.

HOW TO SPECIFY

To select material, choose one of the following as the prefix to the Timken part number:

None - 52100

34 - CEVM 440C

3 - 440C

35 - VIM-VAR M50 Nil

5 – VIM-VAR M50

58 - Pyrowear 675

25 - BG-42

26 - CEVM 52100

RADIAL PLAY AND CONTACT ANGLE

Radial play, or free internal clearance, is one of the most critical bearing design parameters. Contrary to a common misconception, it has nothing to do with quality or ANSI/ABMA or ISO tolerance level. In both ball and roller bearings, radial play is defined as the free radial displacement of the outer ring with respect to a fixed inner ring. In ball bearings, it directly affects and controls the operating contact angle and free axial or endplay. In some ball bearing applications, contact angle or endplay may be the controlling specification. In these cases, radial play is not designated, but is offered as a "reference."

RADIAL PLAY SELECTION – HK, HD AND R TYPES

Ball bearings are normally manufactured to one of the five standard ranges shown in the chart on page 43. Unless otherwise specified, Timken HK (deep-groove) and HD (fractured outer ring) ball bearings and R-series roller bearings are supplied with Group N standard clearances. This standard range has excellent radial stability and load capacity. In ball bearings, Group N provides good resistance to cocking loads and a reasonable degree of axial location without preloading. It also allows for a light press fit on the inner ring for normal rotating shaft applications.

LOOSER FITS

Group 3 and Group 4 clearances may be specified in a bearing for a number of reasons:

- 1) To allow for a press fit on the outer ring and where necessary on both rings. Keep in mind that 50 percent to 75 percent of an interference fit is reflected in loss of radial play. Temperature extremes cause additional changes in radial play when dissimilar materials are used for shaft and housing materials.
- 2) To provide higher contact angles under axial loads, thereby reducing stress levels that increase fatigue life, reduce torque and help to improve operating efficiency.
- 3) To provide greater axial stability, particularly in preloaded bearings.
- 4) To allow greater static and dynamic misalignment.

TIGHTER FITS

Group 2 clearance may be specified for a bearing slip-fit mounted in both the housing and on the shaft, and operating under straight radial loads. If cocking loads are unavoidable, Group 2 provides the greatest resistance and angular control. If preloading between two bearings is impractical, it also provides the most precise axial location.

RELATIONSHIP BETWEEN RADIAL PLAY. **ENDPLAY AND CONTACT ANGLE** (HK AND HD SERIES BALL BEARINGS)

The following graph provides the designer with the means to calculate the relationship between radial play, contact angle and endplay for Timken® bearings with standard inner and outer race curvatures. Since curvature significantly affects this relationship, any bearing with inverse curvature or reduced curvature for extra-high load capacity will have a different relationship. The values obtained with this graph are averages and should not be interpreted as acceptance or manufacturing limits.

RADIAL PLAY AND CONTACT ANGLE continued

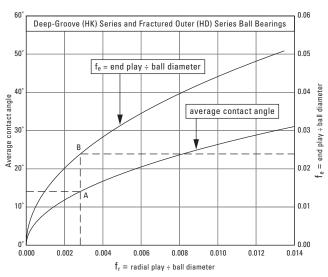


Fig. 12. Relationship between radial play, endplay and contact angle for any ball size.

EXAMPLE:

Determine the average contact angle and the average endplay on an HD 106 bearing with Group 3 (loose) internal clearance:

- 1) From table of dimensions (see Ball Bearing Specifications page 25) the ball diameter is found to be $\frac{9}{22}$ inch (0.28125 inch).
- 2) From the chart on page 43, the internal clearance for group 3 for a 106 bearing is 0.0005 inch to 0.0011 inch.
- 3) The conditions for average internal clearance (0.0008 inch) or the extremes (0.0005 inch and 0.0011 inch) may be read off the graph above. First determine the value of f_r.

$$f_r = \frac{\text{radial play}}{\text{ball diameter}} = \frac{0.0008}{0.28125} = 0.00285$$

- 4) Extend a vertical line from $f_c = 0.00285$ through curves labeled "Contact Angle" and "fe" to determine intersection points "A" and "B."
- 5) Extend horizontal line to left from "A" to determine average contact angle of 14 degrees.
- 6) To obtain endplay, extend horizontal line to right from point "B" to determine value; $f_e = 0.024$.

Solve equation
$$f_e = \frac{\text{endplay}}{\text{ball diameter}}$$

endplay = ball diameter x $f_e = 0.28125 \times 0.024 = 0.0067$ inch

NOTE

An interference fit will reduce the internal clearance by approximately 50 percent to 75 percent of the amount of interference, giving operating conditions of a tighter internal fit-up. If interference fits are used, first determine the reduced internal clearance, then the contact angle or the average endplay of the bearing.

The graph also may be used to determine the required internal clearance range from predetermined axial play or contact angle values.

RADIAL PLAY SELECTION - HA/HJ AND HT TYPES

Angular contact (HA/HJ) ball bearings are normally manufactured to a contact angle tolerance rather than a specified radial play. The two standard contact angles are 15 degrees and 25 degrees; 15 degrees should be used for applications which, while predominantly axially loaded, have a significant radial load component, and 25 degrees should be used for high-axial-load applications.

Split-inner-ring (HT) series bearings are normally manufactured to a contact angle of 25 degrees or higher. Due to the special nature of these bearings, consult your Timken engineer or representative before specifying.

HOW TO SPECIFY:

To specify radial play or contact angle, choose one of the following alternatives and then add the suffix to the basic bearing part number. For standard Group N, the code may be omitted.

- 1) To specify a radial play range: Select the group code number from table on page 43. Example: "3" indicates Group 3.
- 2) To specify radial play: Express in ten thousandths (0.0001) of an inch x 10,000. Example: (5/15) indicates 0.0005/0.0015 radial play.
- 3) To specify contact angle code (HA/HJ-type angular contact bearings only): Use letter code in parentheses. Suffix (D) is equivalent to normal contact angle of 25 degrees.

Codes B and D are standard contact angles offered.

Code	Contact Angle Degrees
Α	12
В	15
С	18
D	25
Ε	30

RADIAL PLAY, BALL BEARINGS

				ISO	and ANSI/ABM	A Radial Play Gr	oups				
Bore D	iameter	Gro	up 2	Gro	up N	Gro	up 3	Gro	up 4	Gro	up 5
≥	S	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
6	10	0.000	0.007	0.002	0.013	0.008	0.023	0.014	0.029	0.020	0.037
0.2362	0.3937	0.0000	0.0003	0.0001	0.0005	0.0003	0.0009	0.0006	0.0011	0.0008	0.0015
10 0.3937	18 0.7087	0.000 0.0000	0.009 0.00035	0.003 0.0001	0.018 0.0007	0.011 0.00045	0.025 0.0010	0.018 0.0007	0.033 0.0013	0.025 0.0010	0.045 0.0018
18 0.7087	24	0.000	0.010	0.005	0.020	0.013	0.028	0.020	0.036	0.028	0.048
	0.9449	0.0000	0.0004	0.0002	0.0008	0.0005	0.0011	0.0008	0.0014	0.0011	0.0019
24	30	0.001	0.011	0.005	0.020	0.013	0.028	0.023	0.041	0.030	0.053 0.0021
0.9449	1.1811	0.00005	0.00045	0.0002	0.0008	0.0005	0.0011	0.0009	0.0016	0.0012	
30	40	0.001	0.011	0.006	0.020	0.015	0.033	0.028	0.046	0.040	0.064 0.0025
1.1811	1.5748	0.00005	0.00045	0.00025	0.0008	0.0006	0.0013	0.0011	0.0018	0.0016	
40	50	0.001	0.011	0.006	0.023	0.018	0.036	0.030	0.051	0.045	0.073 0.0029
1.5748	1.9685	0.00005	0.00045	0.00025	0.0009	0.0007	0.0014	0.0012	0.0020	0.0018	
50	65	0.001	0.015	0.008	0.028	0.023	0.043	0.038	0.061	0.055	0.090 0.0035
1.9685	2.5591	0.00005	0.0006	0.0003	0.0011	0.0009	0.0017	0.0015	0.0024	0.0022	
65 2.5591	80 3.1496	0.001 0.00005	0.015 0.0006	0.010 0.0004	0.030 0.0012	0.025 0.0010	0.051 0.0020	0.046 0.0018	0.071 0.0028	0.065 0.0026	0.105 0.0041
80 3.1496	100 3.9370	0.001 0.00005	0.018 0.0007	0.012 0.00045	0.036 0.0014	0.030 0.0012	0.058 0.0023	0.053 0.0021	0.084 0.0033	0.075 0.0030	0.120 0.0047
100	120	0.002	0.020	0.015	0.041	0.036	0.066	0.061	0.097	0.090	0.140
3.9370	4.7244	0.0001	0.0008	0.0006	0.0016	0.0014	0.0026	0.0024	0.0038	0.0035	0.0055
120 4.7244	140 5.5118	0.002 0.0001	0.023 0.0009	0.018 0.0007	0.048 0.0019	0.041 0.0016	0.081 0.0032	0.071 0.0028	0.114 0.0045	0.105 0.0041	0.160 0.0063
140 5.5118	160 6.2992	0.002 0.0001	0.023 0.0009	0.018 0.0007	0.053 0.0021	0.046 0.0018	0.091 0.0036	0.081 0.0032	0.130 0.0051	0.120 0.0047	0.180 0.0071
160 6.2992	180	0.002	0.025	0.020	0.061	0.053	0.102	0.091	0.147	0.135	0.200
	7.0866	0.0001	0.0010	0.0008	0.0024	0.0021	0.0040	0.0036	0.0058	0.0053	0.0079
180 7.0886	200 7.8740	0.002 0.0001	0.030 0.0012	0.025 0.0010	0.071 0.0028	0.063 0.0025	0.117 0.0046	0.107 0.0042	0.163 0.0064	0.150 0.0059	0.230 0.0091
200	225	0.002	0.035	0.025	0.085 0.0033	0.075	0.140	0.125	0.195	0.175	0.265
7.8740	8.8583	0.0001	0.0014	0.0010		0.0030	0.0055	0.0049	0.0077	0.0069	0.0104
225	250	0.002	0.040	0.030	0.095	0.085	0.160	0.145	0.225	0.205	0.300
8.8583	9.8425	0.0001	0.0016	0.0012	0.0037	0.0033	0.0063	0.0057	0.0089	0.0081	0.0118
250	280	0.002	0.045	0.035	0.105	0.090	0.170 0.0067	0.155	0.245	0.225	0.340
9.8425	11.0236	0.0001	0.0018	0.0014	0.0041	0.0035		0.0061	0.0096	0.0089	0.0134
280	315	0.002	0.055	0.040	0.115	0.100	0.190	0.175	0.270 0.0106	0.245	0.370
11.0236	12.4016	0.0001	0.0022	0.0016	0.0045	0.0039	0.0075	0.0069		0.0096	0.0146
315 12.4016	355 13.9764	0.003 0.0001	0.060 0.0024	0.045 0.0018	0.125 0.0049	0.110 0.0043	0.210 0.0083	0.195 0.0077	0.300 0.0118	0.275 0.0108	0.410 0.0161
355 13.9764	400 15.7480	0.003 0.0001	0.070 0.0028	0.055 0.0022	0.145 0.0057	0.130 0.0051	0.240 0.0094	0.225 0.0089	0.340 0.0134	0.315 0.0124	0.460 0.0181
400 15.7480	450 17.7165	0.003 0.0001	0.080 0.0031	0.060 0.0024	0.170 0.0067	0.150 0.0059	0.270 0.0106	0.250 0.0098	0.380 0.0150	0.350 0.0138	0.510 0.0201
450	500	0.003	0.090	0.070	0.190	0.170	0.300	0.280	0.420	0.390	0.570
17.7165	19.6850	0.0001	0.0035	0.0028	0.0075	0.0067	0.0118	0.0110	0.0165	0.0154	0.0224
500 19.6850	560 22.0472	0.010 0.0004	0.100 0.0039	0.080 0.0031	0.210 0.0083	0.190 0.0075	0.330 0.0130	0.310 0.0122	0.470 0.0185	0.440 0.0173	0.630 0.0248
560 22.0472	630 24.8031	0.010 0.0004	0.110 0.0043	0.090 0.0035	0.230 0.0091	0.210 0.0083	0.360 0.0142	0.340 0.0134	0.520 0.0205	0.490 0.0193	0.690 0.0272

PRELOADING

There are three basic reasons for preloading a ball bearing:

- To define more precisely a shaft position by increasing bearing stiffness.
- 2) To keep the balls in contact with the race to prevent skidding and reduce noise.
- To share a load, axial or radial, equally between two bearings.

PRELOADING METHODS

Conventional radial (HK) or angular contact (HA/HJ) ball bearings may be preloaded in an application using one of the following basic techniques:

- Increase axial load to a predetermined torque range by using adjustable face clamping, for example a nut or screw.
- Select a shim to create a predetermined torque value or axial deflection value under a reversing gage load.
- Mount bearings with a preload spring, either between inner or outer rings or at one end of the assembly.
- Use factory preloaded duplex pairs of bearings, which provide exact "built-in" preload when face-clamped in a DB, DF or DT configuration.

Where opposed single bearings are involved, two types of preload mounts are possible: DB (back-to-back) and DF (face-to-face). The type of mount is usually predicated on unit assembly considerations. DB mounts are most desirable where overturning moment loading is to be supported; DF mounts allow limited angular misalignment.

FACTORY-DUPLEXED PAIRS

Timken supplies pairs of radial bearings that have a precision-matched offset. When face-clamped together or against equal length spacers, a predetermined preload value is obtained. Duplex pairs are available in DB or DF configurations with preload values as selected for individual applications. To avoid unloading of either bearing in a two bearing DB or DF set, the minimum preload value should equal one-third of the applied axial load. The maximum preload limit should then be specified as at least one and a half times the minimum preload.

DT pairs, while not preloaded, are available matched to ensure equal sharing of axial load. DU pairs have offsets matched on both sides to allow use in any of the three configurations.

Matched sets of three or more bearings also are available.

ADVANTAGE OF EACH METHOD

DB – Provides excellent radial, axial and moment stability when there are no additional bearings on the shaft.

DF – Provides radial and axial stability and aligns readily with additional bearings mounted on the same shaft.

DT – Shares extra-high axial loads equally between two bearings. Does not provide stability unless further preloaded with additional bearings.

MARKING

Bearings of DB, DF and DT duplex sets have two axial lines forming a 30-degree included angle "V" etched across the outer rings of the pair (with the point of the "V" at the outer ring face to which the load is applied in the case of DT pairs).

HOW TO SPECIFY:

To specify preload, show preload type DB, DF, DT or DU and min./max. preload value desired.

Example: DB preload, 3.63 kg min. to 5.44 kg max.

(8 lbs. min. to 12 lbs. max.)

Specify as: DB 8/12.

Add this suffix to the standard part number.

ROLLER BEARINGS

Roller bearings may be radially preloaded by application of bi-lobe or tri-lobe geometry to the outer ring, through use of specialized grinding techniques. Consult Timken for advice and applicability.

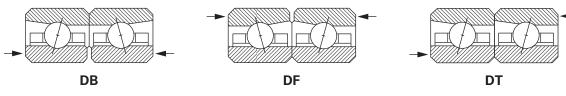


Fig. 13. Matched bearing pairs.

BEARING MOUNTING PRACTICES

Bearing fits are generally established based upon the application data such as loads, materials, temperatures and speeds. Every bearing must be properly fitted before it can meet its performance requirements. Preferably, housing and shaft tolerances should be selected in magnitudes approximately equal to the diameter tolerances of the bearing (see tolerance charts on pages 32-39). The normal fitting procedure is to press fit the ring that rotates relative to the applied radial load from bearing dimension is equal to (or matches) the shaft or housing dimension to tight. The ring stationary relative to the applied radial load is usually slip fitted from bearing dimension is equal to (or matches) the shaft or housing dimension to loose.

Heavier or out-of-balance loads may require tighter fits to avoid fretting damage to the housing or shaft. In these cases. additional radial play is required to compensate for the press fit.

Shaft and housing shoulders should be of adequate height to properly support the face of the bearing. See suggested minimum shaft and maximum housing dimensions in the bearing specification tables. Shoulders should be carefully machined to prevent misalignment and have a corner fillet radius not exceeding the radius dimension listed in the specifications.

It is always preferable to use shaft and housing materials with compatible coefficients of expansion with the bearing. Whenever this is impractical due to weight or other material consideration, use the adjacent chart to determine the possible degree of looseness or interference at temperature extremes. This additional looseness or tightness can be partially compensated for by adjusting fits and radial play.

EFFECT OF FITTING PRACTICE ON RADIAL PLAY AND PRELOAD

Keep in mind that 50 percent to 75 percent of the interference fit at any temperature extreme is reflected in loss of radial play. Press fits are even more significant in their effect on increasing preload in factory-duplexed fits. For example, with an HA 107 bearing having a 4.54 kg (10 lbs.) preload, a 0.0152 mm (0.0006 in.) press fit of the inner raceway on a solid steel shaft would increase the preload in excess of 45.36 kg (100 lbs.). To avoid excessive as-mounted preloads, pairs are either mounted with loose fits or specified as "matched and coded" on the bores and/or O.D.s so that a fit of 0.0025 mm (0.0001 in.) tight on the rotating member can be established. Contact Timken for specific application assistance.

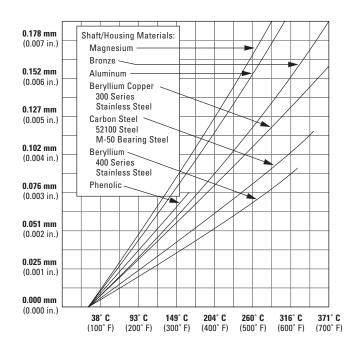


Fig. 14. Linear or diametral expansion in mm (inches) from 21° C (71° F).

To determine expansion or potential fit variation for dissimilar materials: multiply bore or O.D. diameter by the expansion for each material at the maximum temperature required. Contraction at temperatures below 21° C (71° F) is equal to the expansion for a comparable temperature differential above 21° C (71° F).

DYNAMIC LOAD RATING AND LIFE CALCULATIONS

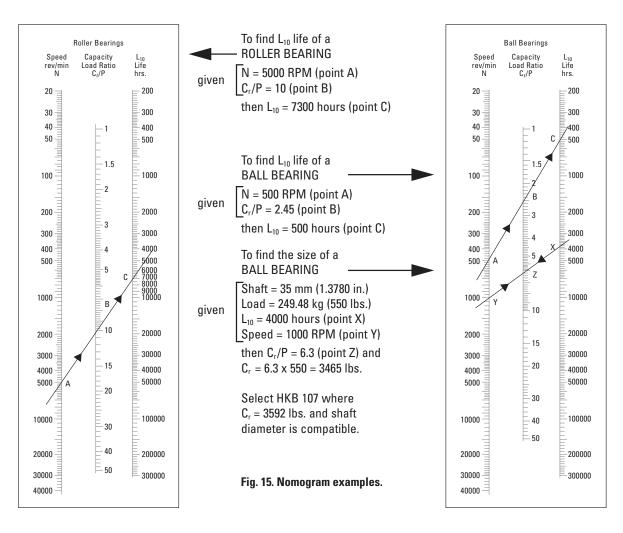
The calculation methods in the following paragraphs yield approximate results only. In particular, they do not account for the effects of higher speeds or, for ball bearings, race curvature. More sophisticated, computer-based analyses are available by contacting Timken.

The dynamic load ratings for all ball and roller bearings described in this design guide (see bearing specification tables) are based on an average (L_{50}) life of 2500 hours or a minimum (L_{10}) life. The dynamic load rating, C_r is defined as that constant stationary radial load which a rolling element bearing could theoretically endure for a basic rating life on one million revolutions. L_{10} life for an individual rolling bearing, or a group of apparently identical rolling bearings, operating under the same conditions, is the life associated with 90 percent reliability, with contemporary, commonly used material and manufacturing quality, and under conventional operating conditions. Reference: ANSI/ABMA Std. 9 and 11.

NOTE

The load rating is a calculation device only. Under actual operating conditions, a $\frac{Cr}{\rho}$ ratio of less than three or more than 10 should be avoided.

TO CALCULATE L_{10} RATING LIFE FOR OTHER LOADS AND SPEEDS:


Determine

С_г Р

 C_r = dynamic load rating (see bearing specification tables pages 17-21 and 26-30)

P = equivalent radial load (see page 48)

Enter the nomogram at N (the desired RPM). Draw a straight line through the $\frac{Cr}{P}$ value. The intersection point with the right hand line equals the L_{10} life.

TO SELECT A BEARING SIZE:

Knowing the required L₁₀ life, RPM and load, the nomograms can be solved for $\frac{Cr}{P}$. Enter the nomogram at N RPM and draw a straight line to the $L_{\scriptscriptstyle 10}$ value. The intersection with the center line is the $\frac{Cr}{P}$ ratio. Multiply $\frac{Cr}{P}$ by P (equivalent load) and obtain C_r. Using this value, enter the C_r column in the bearing dimension and capacity tables and select a bearing with the proper capacity to suit the shaft and housing requirements.

ALTERNATE DIRECT CALCULATION METHOD

Roller Bearings

Cylindrical bearing L₁₀ life

$$L_{10} = \frac{((C_r/P)^{10/3} \times 10^6)}{N \times 60}$$

Ball Bearings

Radial and angular contact bearing L₁₀ life

$$L_{10} = \frac{((C_r/P)^3 \times 10^6)}{N \times 60}$$

Where:

- 1) L_{10} = rating life in hours
- 2) N = bearing speed in RPM
- 3) $C_r = dynamic load rating (see Column <math>C_r$ bearing specification table, pages 17-21 and 26-30)
- 4) P = equivalent radial load (see next page)

VARIABLE LOAD OR SPEED CALCULATION

Variable load and constant speed

$$P = \sqrt[X]{\frac{P_1^x f_1 + P_2^x f_2 + P_3^x f_3 + \cdots + P_n^x f_n}{100}}$$

Variable load and variable speed

$$P = \sqrt[X]{\frac{P_1^X N_1 f_1 + P_2^X N_2 + P_3^X N_3 f_3 + \cdots + P_n^X N_n f_n}{100 N_m}}$$

X = 3 for ball bearings, 1\% for cylindrical roller bearings

 N_m is the mean equivalent speed where:

$$N_m = \frac{N_1 f_1 + N_2 f_2 + N_3 f_3 + --- + N_n f_n}{100}$$

where: P₁, P₂, etc., equal each discrete radial load (lbs.) f₁, f₂, etc., equal percent time when each load is applied. The sum of $f_1 + f_2 + f_3 + ... + f_n$ must equal 100 exactly.

The resulting value P is the equivalent mean load to be used forlife calculation.

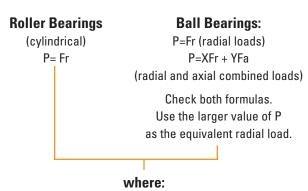
For ball bearings with combined radial and axial loads, first calculate the equivalent radial load for each condition per the preceding paragraph; then use those values to calculate the equivalent mean load.

DYNAMIC LOAD RATING AND LIFE CALCULATIONS continued

Example: A roller bearing has a variable load of 22.68 kg (50 lbs.) for 2 minutes, 11.34 kg (25 lbs.) for 3 minutes and 45.36 kg (100 lbs.) for 5 minutes.

The equivalent load with speed constant is:

$$P = \sqrt[19]{\frac{50^{10}/(20) + 25^{10}/(30) + 100^{10}/(50)}{100}} \approx 82 \text{ lbs.}$$


In the given example, if speed also varies with load, 2000 RPM, 5000 RPM and 3000 RPM respectively, then:

$$N_m = \frac{2000(200) + 5000(30) + 3000(50)}{100} = 3400 \text{ RPM}$$

$$\begin{array}{l} lbs. \ ^{19}\!\!/_{3} \\ P = \end{array} \sqrt{\frac{50^{^{10}\!\!/_{3}}(2000)(20) + 25^{^{10}\!\!/_{3}}(5000)(30) + 100^{^{10}\!\!/_{3}}(3000)(50)}{100\,(3400)}} \approx 79 \end{array}$$

EQUIVALENT RADIAL LOAD (P)

In both rating life formulas below, the equivalent radial load (P) is the constant stationary radial load, which, if applied to a bearing with a rotating inner ring and stationary outer ring, would give the same life as the bearing would attain under actual conditions of load and rotation.

- 1) F_r = calculated radial load
- 2) F_a = calculated axial load
- 3) X = 0.50 radial factor 4) Y = axial factor for ball bearings under combined loads

Y is a function of F_a/C_o (axial load divided by the radial static capacity) and the radial clearance factor, f_r .

where:
$$f_r = \frac{\text{average radial play in inches}}{\text{ball diameter in inches}}$$

To determine the value of Y for single-row ball bearings, compute f_r and select the curve closest to this value in the chart to the right. Solve for F_a/C_o and determine Y using the selected curve.

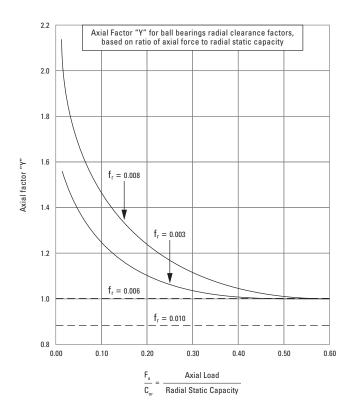


Fig. 16. Axial Factor Y

Use care to select bearings that are of sufficient size for the application. A bearing that appears to have adequate life may require a shaft so small that shaft deflection could lead to misalignment and fitting problems. A further analysis is sometimes required.

STATIC LOAD RATINGS

Ball and roller bearings loaded in a static (non-rotating) condition will experience some degree of permanent deformation at the ball-/roller-to-race contact. The static load rating is an indicator as to the magnitude of that deformation.

RATING DEFINITION

Radial static capacity, C_{0r} , is defined by ANSI/ABMA in terms of contact stress at the center of the most heavily loaded ball/roller.

- For ball bearings (except self-aligning types), the rating is based on 609KSI (4200 MPa) contact stress.
- For roller bearings, the rating is based on 580KSI (4000 MPa) contact stress.

These stresses correspond to a permanent deformation of 0.0025 mm/mm (0.0001 in./in.) of the ball or roller diameter. (Examples: a 25.4 mm [1 in.] ball or roller will have approximately 0.0025 mm [0.0001 in.] permanent deformation when loaded to C_{0r} . A 12.7 mm [0.5 in.] ball or roller will have approximately 0.0013 mm [0.00005 in.] permanent deformation). Experience has shown that most applications can tolerate this degree of permanent deformation without impairing subsequent operation.

Contact your Timken representative to discuss specific applications.

RADIALLY LOADED APPLICATIONS

For ball or cylindrical roller bearing applications subject to radial loading only, the applied load is applied directly to the C_{0r} rating.

AXIAL-LOADED OR COMBINED RADIAL-/AXIAL-LOADED APPLICATIONS

Ball Bearings

Ball bearings with combined radial and axial static loading or axial static loading only require the calculation of a static equivalent radial load, which is then applied against the Cor rating. Contact your Timken representative for the applicable X₀ and Y₀ factors or see ANSI/ABMA Standard 9.

Static axial-loaded ball bearing applications may also be subject to other limitations.

- Depending on initial contact angle (radial play), groove depth and race curvature (conformity), truncation of the contact ellipse may be a limiting factor.
- Fractured-outer-ring bearings (HD series) may be limited by the ability of the holding wires to keep the fracture closed. Axial loads in excess of approximately 90.72 kg (200 lbs.), depending on bearing size, may tend to open the fracture, causing early damage. Where the housing fit can be maintained line-to-line to tight, the holding wires will no longer be the limiting factor and higher axial loads, equivalent to the HK configuration, may be applied.

Roller Bearings

Cylindrical roller bearings, depending on the ring configuration, are capable of supporting axial loads. Since the load is taken on the much larger roller end surfaces rather than on the normal contact surfaces, the Cor rating does not apply; the static load is limited only by the structural strength of the ring guide flanges and their supporting shaft and housing shoulders.

LIFE ADJUSTMENT FACTORS

Life adjustment factors can be used to further define the rating life in terms of (1) reliability, (2) material and (3) application conditions. The fatigue life formula embodying these adjustment factors is:

$$L_n = a_1 a_2 a_3 (L_{10})$$

a₁ = RELIABILITY FACTOR

It may be desirable for reliability factor (a_1) to determine the life when more than 90 percent of the bearings must still be operating.

Reliability L_{10} (Rating Life)	Reliability Factor (a ₁)
90 percent L_{10}	1.00
95 percent L ₅	0.64
96 percent L ₄	0.55
97 percent L ₃	0.47
98 percent L ₂	0.37
99 percent L ₁	0.25
99.5 percent L _{0.5}	0.175
99.9 percent L _{0.1}	0.093

Example

If the L_{10} rating life of a bearing in a specific application is 4000 hours, the L_{1} life for 99 percent reliability would be

 $a_1 \times L_{10} = 0.21 \times 4000 = 810$ hours.

a₂ = MATERIAL FACTOR

Certain materials have greater fatigue life than others operating under identical conditions. The theoretical L_{10} dynamic life is based on air-melt steel and standard ANSI/ ABMA formulas. The life adjustment factors are based on a combination of steel type (chemistry), steel melting practice and post-melt processing of the steel. The factors are based on work done by the ANSI/ABMA and are in standards effective July 1990. This information is used in determining material life factors. There are additional life factors. Consult with a Timken sales engineer or representative for specific recommendations based on the bearing materials being considered.

a₃ = APPLICATION FACTOR

Life adjustment factors for application conditions, such as lubrication, precision, misalignment, temperature, etc., are more complex and may require more discrete analysis. For example, low viscosity oil (less than 70 ssu), high temperatures (varies with steel) and speeds insufficient to generate a hydrodynamic oil film require the use of an a₃ value of less than 1. Actual test experience in a particular application is the best way to develop accurate a₃ factors.

CONSIDERATIONS IN BEARING LIFE **PREDICTION**

In all discussions of the calculated dynamic load rating and L₁₀ life, the factor that determines bearing life is always considered to be subsurface origin fatigue spalling of the inner or outer raceway or rolling elements. Fatigue results from cyclic stress reversals on the rolling contact surfaces and is characterized by actual loss of metal. Initially, only the vibration level of the bearing increases, but more extensive damage may follow if operation is allowed to continue. The wear rate of the cage substantially increases and the ring or one of the rolling elements may fracture, causing a total lockup. For this reason, magnetic chip detectors are used in many critical applications to highlight early stages of fatigue in gear or bearing components.

Other modes of damage that are not statistically predictable by the conventional ANSI/ABMA formulas can affect performance. Depending on the criticality of torque and noise level, they may result in a dramatically reduced design life long before the predicted life has been achieved.

These include:

- True load brinells caused by either radial or axial impacts in excess of the static rating. Results: roughness and noise.
- False brinells caused by vibration under static conditions with inadequate lubrication. Results: fretting corrosion on raceways and shorter life.
- Wear caused by loss of lubrication or introduction of abrasive particles (contamination). Results: premature spalling of raceways and rolling elements.
- Ball/roller skidding caused by rapid acceleration with inadequate load/preload. Results: flat spots, noisy bearings, overheating and early failures.
- Ring or ball fracture or cage fracture caused by improper mounting techniques or extreme loads. Results: fractured bearing elements and early failures.
- Rotational interference caused by debris, lubricant oxidation, loss of radial play due to improper fitting procedures, corrosion, etc. Results: early failures and overheating.

LUBRICATION

Selection of the lubricant type and the method of distribution are critical to achieve successful life. Lubrication has four basic purposes:

- 1) Minimize rolling resistance due to deformation of the rolling elements and raceway under load by separating the mating surfaces.
- 2) Minimize sliding friction occurring between rolling elements, raceways and cage.
- 3) Transfer heat (with oil lubrication).
- 4) Protect from corrosion and, with grease lubrication, from contaminant ingress.

The relative importance of each depends upon the application, particularly on the speed and load. Effect of speed on different bearings can be related by the dN value (bore diameter mm x RPM).

HIGH-SPEED APPLICATIONS (OVER 1 MILLION dN)

Lubrication of high-speed (more than 1 million dN) applications is most critical. Centrifugal force tends to throw lubricant from the heavily stressed inner raceway into the outer race. Lubricant accumulation creates additional drag and heat, causing slippage or wear on the inner raceway. In high-speed applications, the most effective means of lubrication uses one or more high-velocity jets of oil directed at the inner raceway contact area with adequate escape for used lubrication around the outer race shoulders. In some applications, this can be achieved by bringing oil through holes at critical locations in the inner race. If loads are not severe, air can be mixed with oil in a non-recirculating oil mist system. With mist lubrication, air provides the cooling and cleaning functions.

MEDIUM-SPEED APPLICATIONS (10000 TO 1 MILLION dN)

In the broad range of 10000 to 1 million dN, which encompasses most bearing applications, the lubricant's cooling function is less critical. A circulating or replenishment oil system is still preferable for optimum life, but a controlled quantity of grease may be used if temperatures are low. With above ambient temperatures, grease frequently deteriorates long before the predicted fatigue life of the bearing. Unless the bearings are periodically regreased with the proper amount of lubricant, early fatigue may result. New developments in hightemperature greases provide a partial solution to the problem.

Bearing fatigue life can be prolonged beyond that predicted in this design guide if full fluid film elastohydrodynamic lubrication is established at the contact surface. To achieve this, the fluid film thickness must be equal to or greater than contact surface finish or microgeometry variations at the most heavily loaded

LUBRICATION continued

contact area. Without full fluid separation, metal contact occurs, causing higher surface shear stress, possible wear and reduced life.

Fluid film separation is influenced by: 1) size, design and precision of the bearing; 2) speed; 3) applied load; and 4) viscosity characteristics of the oil at operating temperatures.

Most medium-speed bearings operating with high-quality mineral oils under average loads establish full fluid film separation. However, where low viscosity fluids or lubricants are required, fluid film may not be established, resulting in reduced life (e.g., hydraulic pumps and fuel control systems). Bearings operating in jet fuel yield less than 10 percent of normal life. Timken Aerospace computer programs utilizing the above variables are available to assist designers in determining adequacy of the lubricant. Then, design or application modifications can be reviewed to compensate for or accept potential life reductions.

Where fluid film cannot be maintained due to low speeds and high bearing loads, grease lubrication may prove advantageous. Extreme pressure additives in some greases provide good boundary lubrication and lubricity even though the viscosity characteristics of the oil provide marginal fluid film support.

The selection of oil viscosity for any bearing application requires consideration of several factors: load, speed, bearing setting, type of oil, and environmental factors. Since viscosity varies inversely with temperature, a viscosity value

must always be stated with the temperature at which it was determined. High viscosity oil is used for low-speed or highambient temperature applications. Low viscosity oil is used for high-speed or low-ambient temperature applications.

The measure of viscosity uses multiple units that depend upon the test method used in the evaluation. There are several viscosity terms, such as absolute, kinematic and apparent. The units used in most modern analysis programs are the kinematic viscosity expressed in centistokes (cs). It can be related to the absolute viscosity, expressed in centipoise (cp) by the oil density. The purpose of the lubrication, ideally, is to separate the moving elements in a bearing by developing a protective film, thereby avoiding metal-to-metal contact at the surface finish asperities.

Lubricants are temperature limited. Mineral oils may be utilized at temperatures not exceeding -40° C to 107° C (-40° F to 225° F).

Synthetic esters and di-esters may be utilized at temperatures not exceeding -54° C to 176° C (-65° F to 350° F).

Degradation of the lubrication film is most affected by oxidation and is accelerated at higher temperatures.

LUBRICATION FILTRATION

To obtain the greatest benefit from the lubrication supplied, it is important that the lubrication system is properly filtered. For oil lubrication in critical applications where speeds are moderate to high, use of a 3 to 5 micron filter is advised. Be aware that a hard particle greater than 2.5 to 7.5 microns (0.0001 to 0.0003 inches) can cause wear, scuffing and other surface distress. When grease is used, it also should be filtered prior to installation, since unfiltered grease may be highly contaminated. Filtering the grease with a 5 micron filter is recommended.

LOW-SPEED APPLICATIONS

Under slow speed or oscillating conditions, bearings no longer depend on fluid film separation, but operate with metalto-metal contact. Wear is minimized by grease lubricants with high lubricity and extreme pressure additives providing effective "boundary layer" separation. Thin, dry-film coatings may be added to further improve wear resistance.

Standard lubrication

Most aircraft turbine and transmission bearings operate with supplemental replenishment lubricant systems. Therefore, unless otherwise specified, all open bearings with cages are supplied with a preservative coating meeting MIL-PRF-32033. Open bearings with nonmetallic cages are supplied with

a light oil preservative per MIL-PRF-6085. These are nonoperating coatings rather than lubricants. They are, however, compatible with most lubricants and generally do not need to be removed prior to mounting.

Sealed bearings are normally lubricated with a controlled quantity of sodium soap grease. This provides excellent channeling characteristics, resulting in minimum torque and heat generation.

Special lubricants

Timken maintains an inventory of oils and greases for use in special applications exposed to extreme conditions of temperature, vacuum, moisture or radiation. Where initial lubrication must last the life of the bearing, grease is preferable to oil (except for instrument-type applications having sensitive torque requirements). The choice of grease is a function of oil and thickener type as well as the additive package to meet many special requirements.

HOW TO SPECIFY

The greases listed with the Timken lubricant code are typical of those frequently specified. The lubricant code should be identified when ordering the bearing. For a more complete list, consult your Timken representative.

Timken Lubrication Code	Brand Name	Manufacturers' Suggested Temp.Range	Comments
LY 263	Aeroshell 22	-65 to +204° C	Non-melting, inorganic thickener with synthetic hydrocarbon oil for excellent fatigue life over wide
Lf 203	Aerostieli 22	-85 to +400° F	temperature ranges. General-purpose lubricant, meets MIL-PRF-81322.
LY 708	Mobil 28	-65 to +177° C	Organic bentonite clay binder with synthetic hydrocarbon oil. Has EP additives. Meets MIL-PRF-81322.
Lf 706	IVIUDII 20	-85 to +350° F	organic bentonite day binder with synthetic nythocarbon on. has Er additives, weets wite-rnr-61322.
LY 240	Shell Darina E P 2	-30 to +175° C	Similar to LY 270 except uses non-melting, inorganic thickener to enhance high-temperature operation.
LT 240	Sileli Dalilia E F Z	-20 to +350° F	Similar to Lt 270 except uses non-inerany, morganic unickener to emilance myn-temperature operation.
LY 270	Shell Alvania E P 2	-30 to +149° C	Lithium soap, mineral oil, extreme pressure lubricant. Excellent water resistance for long design life
LT 270	Sileli Alvallia E F Z	-20 to +300° F	under adverse operating conditions.
LG 38	Exxon Andok B	-30 to +110° C	Long design life, sodium soap, mineral oil grease with excellent channeling characteristics for
LU 30	EXXUIT ATTUCK B	-20 to +225° F	low torque after run in at all speeds. Limited operating temperature range.
LY 189	-25 to +315° C		Teflon®-type thickener with fluorocarbon oil for maximum high-end temperatures. Chemically inert and
Lt 189	Dupont Krytox 240 AC	-10 to +600° F	insoluable in all fuels and most solvents. Premium price. Meets MIL-PRF-27617.

Table 9. Timken lubrication codes.

ULTRA-HIGH-SPEED PERFORMANCE FEATURES

To operate successfully above 2 million dN speeds, specifically engineered designs have been developed through close cooperation between Timken and the bearing user. Lubrication flow pattern is one of the most important factors. Timken has the manufacturing technology to fabricate both ball and roller bearings in VIM-VAR M-50 steel with integral inner raceway lubrication. Two-piece inner ring mainshaft bearings with lubricant directed between the halves, and mainshaft roller bearings with lubrication holes in precision undercuts (adjacent to guide flanges and to the cage pilot surface) efficiently provide lubricant to critical locations. Both wear and fatigue life are improved while less oil is needed, resulting in higher efficiency and less heat generation.

Where the application warrants:

- 1) Ultraprecise rollers can be manufactured by Timken with end squareness as low as 0.0013 mm (0.00005 in.) and corner radius runout as low as 0.0127 mm (0.0005 in.).
- Slight roller end crown, low guide flange angles and reduced clearances can be combined to further improve roller tracking and permit even higher speeds.
- 3) Special roller crowns can be used to allow for greater misalignment.
- 4) The one-piece broached cage can be modified with relieved areas to improve lubrication and reduce wear.

The extensive use of VIM-VAR M-50 steel in many turbine and accessory positions testifies to its value as the preferred material for ultra-high-speed bearings.

In all cases where special designs are required, consult your Timken representative for assistance in selecting the necessary features.

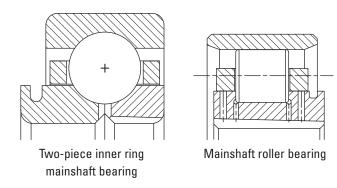


Fig. 17. Ultra-high-speed performance feature examples.

VISCOSITY CONVERSION TABLE

SUS Saybolt	R" Redwood	E Engler	cSt Centistokes
sec.	sec.	deg.	mm ² /s
35	32.2	1.18	2.7
40	36.2	1.32	4.3
45	40.6	1.46	5.9
50	44.9	1.60	7.4
55	49.1	1.75	8.9
60	53.5	1.88	10.4
65	57.9	2.02	11.8
70	62.3	2.15	13.1
75	67.6	2.31	14.5
80	71.0	2.42	15.8
85	75.1	2.55	17.0
90	79.6	2.68	18.2
95	84.2	2.81	19.4
100	88.4	2.95	20.6
110	97.1	3.21	23.0
120	105.9	3.49	25.0
130	114.8	3.77	27.5
140	123.6	4.04	29.8
150	132.4	4.32	32.1
160	141.1	4.59	34.3
170	150.0	4.88	36.5
180	158.8	5.15	38.8
190	167.5	5.44	41.0
200	176.4	5.72	43.2
220	194.0	6.28	47.5
240	212	6.85	51.9
260	229	7.38	56.5
280	247	7.95	60.5
300	265	8.51	64.9
325	287	9.24	70.3
350	309	9.95	75.8
375	331	10.7	81.2
400	353	11.4	86.8
425	375	12.1	92.0

SUS Saybolt	R" Redwood	E Engler	cSt Centistokes
sec.	sec.	deg.	mm ² /s
450	397	12.8	97.4
475	419	13.5	103
500	441	14.2	108
550	485	15.6	119
600	529	17.0	130
650	573	18.5	141
700	617	19.9	152
750	661	21.3	163
800	705	22.7	173
850	749	24.2	184
900	793	25.6	195
950	837	27.0	206
1000	882	28.4	217
1200	1058	34.1	260
1400	1234	39.8	302
1600	1411	45.5	347
1800	1587	51	390
2000	1763	57	433
2500	2204	71	542
3000	2646	85	650
3500	3087	99	758
4000	3526	114	867
4500	3967	128	974
5000	4408	142	1082
5500	4849	156	1150
6000	5290	170	1300
6500	5730	185	1400
7000	6171	199	1510
7500	6612	213	1630
8000	7053	227	1740
8500	7494	242	1850
9000	7934	256	1960
9500	8375	270	2070
10000	8816	284	2200

To convert from	to		Multiply by
	Acceleration		
foot/second ²	meter/second ²	m/s²	0.3048
inch/second ²	meter/second ²	m/s²	0.0254
	Area		
foot ²	meter ²	m²	0.09290304
inch ²	meter ²	m²	0.00064516
inch ²	millimeter ²	mm²	645.16
yard ²	meter ²	m ²	0.836127
mile ² (U.S. statute)	meter ²	m²	2589988
Ber	I Inding Moment or Torc	lue	l
dyne-centimeter	newton-meter	N-m	0.000001
kilogram-force-meter	newton-meter	N-m	9.806650
pound-force-inch	newton-meter	N-m	0.1129848
pound-force-foot	newton-meter	N-m	1.355818
	Energy	l	ı
BTU (International Table)	joule	J	1055.056
foot-pound-force	joule	J	1.355818
kilowatt-hour	megajoule	MJ	3.6
	Force	ı	ı
kilogram-force	newton	N	9.806650
kilopound-force	newton	N	9.806650
pound-force (lbf avoirdupois)	newton	N	4.448222
	Length	ı	
fathom	meter	m	1.8288
foot	meter	m	0.3048
inch	millimeter	mm	25.4
microinch	micrometer	μm	0.0254
micron (μm)	millimeter	mm	0.0010
mile (U.S. statute)	meter	m	1609.344
yard	meter	m	0.9144
nautical mile (UK)	meter	m	1853.18
	Mass		
kilogram-force-second²/meter			
(mass)	kilogram	kg	9.806650
kilogram-mass	kilogram	kg	1.0
pound-mass (Ibm avoirdupois)	kilogram	kg	0.4535924
ton (long, 2240 lbm)	kilogram	kg	1016.047
ton (short, 2000 lbm)	kilogram	kg	907.1847
tonn	kilogram	kg	1000.000

To convert from	to	Multiply by				
Power						
BTU (International Table)/hour	watt	W	0.293071			
BTU (International Table)/minute	watt	W	17.58427			
horsepower (550 ft lbf/s)	kilowatt	kW	0.745700			
BTU (thermochemical)/minute	watt	W	17.57250			
Pressure or Stress (Force/Area)						
newton/meter ²	pascal	Pa	1 .0000			
kilogram-force/centimeter ²	pascal	Pa	98066.50			
kilogram-force/meter ²	pascal	Pa	9.806650			
kilogram-force/millimeter ²	pascal	Pa	9806650			
pound-force/foot ²	pascal	Pa	47.88026			
pound-force/inch² (psi)	megapascal	MPa	0.006894757			
Temperature						
degree Celsius	kelvin	k	$t_k = t_c + 273.15$			
degree Fahrenheit	kelvin	k	k = 5/9 (t _f + 459.67)			
degree Fahrenheit	Celsius	°C	t _c = 5/9 (t _f - 32)			
Velocity						
foot/minute	meter/second	m/s	0.00508			
foot/second	meter/second	m/s	0.3048			
inch/second	meter/second	m/s	0.0254			
kilometer/hour	meter/second	m/s	0.27778			
mile/hour (U.S. statute)	meter/second	m/s	0.44704			
mile/hour (U.S. statute)	kilometer/hour	km/h	1.609344			
Volume						
foot ³	meter ³	m³	0.02831685			
gallon (U.S. liquid)	liter	I	3.785412			
liter	meter ³	m³	0.001			
inch³	meter ³	m³	0.00001638706			
inch³	centimeter ³	cm³	16.38706			
inch ³	millimeter ³	mm³	16387.06			
ounce (U.S. fluid)	centimeter ³	cm ³	29.57353			
yard ³	meter ³	m³	0.7645549			

Timken Aerospace is much more than a source for products; we are your resource for comprehensive aerospace solutions and the best service available. We deliver value at every turn. To learn more about how Timken Aerospace can fuel your company's performance, call Timken Aerospace U.S. at 603.448.3000 or Timken Aerospace Europe at (44)1902.719300.

TIMKEN

The Timken team applies their know-how to improve the reliability and performance of machinery in diverse markets worldwide. The company designs, makes and markets high-performance mechanical components, including bearings, gears, belts, chain and related mechanical power transmission products and services.