

Heating

- These are the maximum temperature limits.
- For elastomer or polymer seals or cages, only use hot air as a heating medium.
- Protect exposed bearing/ring surfaces after positioning on the shaft or housing, and as they normalize to ambient temperatures.

Standard Class Bearings or Rings (with metallic cages and without seals)
Includes Class 4, 2, K, N, ABEC-1 and ABEC-3

121°C (250°F) 8 Hours

Standard Class Bearings or Rings (with non-metallic cages and polymer or elastomer seals)

Special considerations may apply for phenolic cages or special fluorocarbon lip seals.

93°C (200°F) 24 Hours

Precision and Super Precision Class Bearings and Rings Include Class 3, 0, 00, 000, C, B, A, ABEC 5, 7, 9

66°C (150°F) 24 Hours

Cooling (Freezing)

- These are the minimum temperature limits.
- To prevent corrosion:
 - Before installation remove frost from all surfaces;
 - After installation and during part warming, remove moisture condensation;
 - Wipe surfaces with clean, lint-free cloth and reapply preservative.

Freezing Standard Class Bearings and Rings

-54°C (-65°F) 1 Hour

This temperature can be obtained using dry ice in an alcohol bath.

Freezing Precision Class Outer Rings or Cups

-29°C (-20°F) 2 Hours

This temperature can be obtained by commercial freezer/refrigeration equipment.

Stronger. By Design.

Cone Bore Growth Expansion Rates Due to Thermal Changes

Calculations based on an ambient temperature of 21° Celsius (70° Fahrenheit)

Cone Bore	Thermometer temperature reading in degrees				Thermometer temperature reading in degrees		
	65° C 150° F	90° C 200° F	120° C 250° F	Cone Bore	65° C 150° F	90° C 200° F	120° C 250° F
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.
25.4	0.012	0.020	0.027	482.6	0.231	0.375	0.520
1	0.0005	0.0008	0.0011	19	0.0091	0.0148	0.0205
50.8	0.025	0.040	0.055	508	0.243	0.396	0.548
2	0.0010	0.0016	0.0022	20	0.0096	0.0156	0.0216
76.2	0.036	0.058	0.081	533.4	0.256	0.416	0.576
3	0.0014	0.0023	0.0032	21	0.0101	0.0164	0.0227
101.6	0.048	0.078	0.109	558.8	0.269	0.436	0.604
4	0.0019	0.0031	0.0043	22	0.0106	0.0172	0.0238
127	0.061	0.099	0.137	584.2	0.279	0.454	0.629
5	0.0024	0.0039	0.0054	23	0.0110	0.0179	0.0248
152.4	0.073	0.119	0.165	609.6	0.292	0.475	0.657
6	0.0029	0.0047	0.0065	24	0.0115	0.0187	0.0259
177.8	0.086	0.139	0.193	635	0.304	0.495	0.685
7	0.0034	0.0055	0.0076	25	0.0120	0.0195	0.0270
203.2	0.096	0.157	0.218	660.4	0.317	0.515	0.713
8	0.0038	0.0062	0.0086	26	0.0125	0.0203	0.0281
228.6	0.109	0.177	0.246	685.8	0.330	0.535	0.741
9	0.0043	0.0070	0.0097	27	0.0130	0.0211	0.0292
254	0.121	0.198	0.274	711.2	0.340	0.553	0.767
10	0.0048	0.0078	0.0108	28	0.0134	0.0218	0.0302
279.4	0.134	0.218	0.302	736.6	0.353	0.574	0.795
11	0.0053	0.0086	0.0119	29	0.0139	0.0226	0.0313
304.8	0.147	0.238	0.330	762	0.365	0.594	0.823
12	0.0058	0.0094	0.0130	30	0.0144	0.0234	0.0324
330	0.157	0.256	0.355	787.4	0.378	0.614	0.850
13	0.0062	0.0101	0.0140	31	0.0149	0.0242	0.0335
355.6	0.170	0.276	0.383	812.8	0.391	0.635	0.878
14	0.0067	0.0109	0.0151	32	0.0154	0.0250	0.0346
381	0.182	0.297	0.411	838.2	0.401	0.652	0.904
15	0.0072	0.0117	0.0162	33	0.0158	0.0257	0.0356
406.4	0.195	0.317	0.439	863.6	0.414	0.673	0.932
16	0.0077	0.0125	0.0173	34	0.0163	0.0265	0.0367
431.8	0.208	0.337	0.467	889	0.426	0.693	0.960
17	0.0082	0.0133	0.0184	35	0.0168	0.0273	0.0378
457.2	0.218	0.355	0.492	914.4	0.439	0.713	0.988
18	0.0086	0.0140	0.0194	36	0.0173	0.0281	0.0389

MARNING

Failure to observe the following warnings could create a risk of serious injury.

Proper maintenance and handling procedures are critical. Always follow installation and maintain proper lubrication.

TIMKEN

The Timken team applies their know-how to improve the reliability and performance of machinery in diverse markets worldwide. The company designs, makes and markets bearings, gear drives, automated lubrication systems, belts, brakes, clutches, chain, couplings, linear motion products and related power transmission rebuild and repair services.