TIMKEN

Installation Guide

Timken[®] Spherical Roller Bearing Solid-Block Housed Unit TA/TAA DV/DAA Series

INSTALLATION

Depending on the locking style selection choose one of the three methods for installing your housed unit. Single nut tapered adapter can be installed by either using the the axial drive up method or the tang count method. When using double nut tapered adapters use the double nut tapered adapter installation method.

AXIAL DRIVE-UP METHOD

- 1. Clean all components of any debris and apply a thin oil film to all mating surfaces to ensure proper seating.
- 2. If using an open-end cover, slide the open-end cover/seal combination into position on the shaft.
- 3. Slide the adapter sleeve into position on the shaft, then put the housed unit into place on the adapter sleeve.
- 4. Loosely install the housed unit mounting bolts. Check the housed unit alignment. Verify mounting surfaces are in the same flat plane to help achieve good alignment. If shimming is required to minimize misalignment, use full shims across the entire housing base where possible (fig. 1). Washers should be properly sized to the bolt diameter and should not be an SAE grade, which is smaller.
- 5. Put the lockwasher on and thread the locknut onto the adapter sleeve leaving approximately 6.350 mm (1/4 in.) between the lockwasher and the inner ring of the bearing.
- 6. Use a large screwdriver or pry bar to lever the sleeve into position until there is no relative movement between the shaft, the adapter sleeve, and the bearing's inner ring.

- 7. Rotate the locknut until hand-tight.
- 8. Tighten the locknut while using a dial indicator to measure the axial movement of the tapered adapter sleeve relative to the bearing's inner ring (see table 1).
- 9. Bend a tang on the lockwasher into a slot on the locknut to prevent the locknut from loosening.
- 10. Tighten the housed unit mounting bolts.

If using covers:

- 11. Make sure the mating surface of the cover and retaining nuts are clean and dry.
 - a. Urethane cover: slightly roughen the mating surface of the cover, place a 3 mm 6 mm (½ in. ½ in.) bead of polyurethane adhesive sealant on the roughened surface.
 - b. Steel cover: place a 3 mm 6 mm (½ in. ¼ in.) bead of silicone adhesive sealant on the mating surface of the cover.
- 12. Align the cover mounting holes with the mounting holes on the retaining housing nut (make sure that the grease fitting on the cover is accessible when doing so)
- 13. Apply and tighten the cover mounting hardware.

TABLE 1. AXIAL MOVEMENT OF TAPERED ADAPTER SLEEVE RELATIVE TO INNER RING

Shaft Dia.	Bearing No.	Minimum Axial Movement	Maximum Axial Movement		
mm		mm	mm		
in.		in.	in.		
40	22209	0.38	0.46		
1 ½6, 1 ½		0.015	0.018		
45	22210	0.38	0.46		
1 ¹¹ ⁄16, 1 ³ ⁄4		0.015	0.018		
50	22211	0.46	0.56		
1 ¹⁵ ⁄16, 2		0.018	0.022		
55	22212	0.46	0.56		
-		0.018	0.022		
60	22213	0.46	0.56		
2 ¾16, 2 ¼		0.018	0.022		
65	22215	0.64	0.76		
2 ⁷ ⁄16, 2 ¹ ⁄2		0.025	0.030		
70	22216	0.64	0.76		
2 ¹¹ / ₁₆ , 2 ³ / ₄		0.025	0.030		
75	22217	0.69	0.97		
2 ¹⁵ ⁄16, 3		0.027	0.038		
80	22218	0.69	0.97		
3 ¾16, 3 ¼		0.027	0.038		
85	22219	0.69 0.027	0.97 0.038		
90	22220	0.69	0.97		
3 7⁄16, 3 1⁄2		0.027	0.038		
100	22222	0.76	1.07		
3 ¹⁵ ⁄ ₁₆ , 4		0.030	0.042		
110	22224	0.76	1.07		
4 ³ ⁄16, 4 ¹ ⁄4		0.030	0.042		
115	22226	0.89	1.27		
4 ⁷ ⁄ ₁₆ , 4 ¹ ⁄ ₂		0.035	0.050		
125	22228	0.89	1.27		
4 ¹⁵ ⁄16, 5		0.035	0.050		

Shaft Dia.	Bearing No.	Number of Tangs
mm in.		
40 1 7⁄16, 1 ½	22209	3-4
45 1 ¹ 1⁄16, 1 ³ ⁄4	22210	3-4
50 1 ¹⁵ ⁄16, 2	22211	4-5
55	22212	4-5
60 2 ¾6, 2 ¼	22213	4-5
65 2 ½6, 2 ½	22215	5-6
70 2 ¹ 1⁄16, 2 ¾	22216	5-6
75 2 ¹⁵ ⁄16, 3	22217	8-9
80 3 ¾ ₆ , 3 ¼	22218	8-9
85	22219	8-9
90 3 ½6, 3 ½	22220	8-9
100 3 ¹⁵ ⁄16, 4	22222	10-11
110 4 ¾6, 4 ¼	22224	10-11
115 4 ½6, 4 ½	22226	10-11
125 4 ¹⁵ ⁄ ₁₆ , 5	22228	10-11

TANG COUNTING METHOD

- 1. Clean all components of any debris and apply a thin oil film to all mating surfaces to ensure proper seating.
- 2. If using an open-end cover, slide the open-end cover/seal combination into position on the shaft.
- 3. Slide the adapter sleeve into the correct position on the shaft, then put the housed unit into place on the adapter sleeve.
- 4. Loosely install the housed unit mounting bolts. Check the housed unit alignment. Verify mounting surfaces are in the same flat plane to help achieve good alignment. If shimming is required to minimize misalignment, use full shims across the entire housing base where possible (fig. 1). Washers should be properly sized to the bolt diameter and should not be an SAE grade, which is smaller.
- 5. Put the lockwasher on and thread the locknut onto the adapter sleeve leaving approximately 6.350 mm (1/4 in). between the lockwasher and the inner ring of the bearing.
- 6. Use a large screwdriver or pry bar to lever the sleeve into position until there is no relative movement between the shaft, the adapter sleeve and the bearing's inner ring.
- 7. Rotate the locknut until hand-tight.

- 8. Note which tang is in line with one slot on the locknut.
- 9. Tighten the locknut until the slot on the locknut passes the number of tangs shown in table 2.
- 10. Bend a tang on the lockwasher into a slot on the locknut to prevent the locknut from loosening.
- 11. Tighten the housed unit mounting bolts.

If using covers:

- 12. Make sure the mating surface of the cover and retaining nuts are clean and dry.
- 13. Urethane cover: slightly roughen the mating surface of the cover, place a 3 mm 6 mm (1/8 in. 1/4 in.) bead of polyurethane adhesive sealant on the roughened surface.
- 14. Steel cover: place a 3 mm 6 mm (1/8 in. 1/4 in.) bead of silicone adhesive sealant on the mating surface of the cover.
- 15. Align the cover mounting holes with the mounting holes on the retaining housing nut (make sure that the grease fitting on the cover is accessible when doing so).

16. Apply and tighten the cover mounting hardware.

TABLE 2. NUMBER OF TANGS TO LOCKING

TAA/DAA SERIES INSTALLATION PROCEDURE

- 1. Clean all components of any debris and apply a thin oil film to all mating surfaces to ensure proper seating.
- 2. If using an open-end cover, slide the open-end cover/seal combination into position on the shaft.
- 3. Check that the withdrawal nut settings are appropriate for the application shaft size. The axial measurement of the withdrawal nut of the tapered adapter is preset from the factory assuming the shaft is nominal. If the shaft is smaller than nominal, calculate the amount of rotation to adjust the withdrawal nut from the values in table 3 under the withdrawal nut adjustment column (values listed are based on ¼ turn of the withdrawal nut). This is done by rotating the withdrawal nut counter-clockwise when looking at front face of the nut. The lockwasher or lock plate will need to be disengaged before rotating the withdrawal nut.
 - a. For reference, the values for preset are listed in Table 3 under column "Withdrawal Nut Initial Setting" Positive numbers imply the sleeve protrudes past the withdrawal nut, while negative number imply the withdrawal nut overhangs the adapter sleeve.
- 4. Slide the adapter sleeve and withdrawal nut into the correct position on the shaft, then put the housed unit into place on the

adapter sleeve.

- 5. Loosely install the housed unit mounting bolts. Check the housed unit alignment. Verify mounting surfaces are in the same flat plane to help achieve good alignment. If shimming is required to minimize misalignment, use full shims across the entire housing base where possible (Figure 1). Washers should be properly sized to the bolt diameter and should not be an SAE grade, which is smaller.
- 6. Rotate front locknut by hand until it makes contact with inner ring. Using a wrench, further tighten the front locknut until the inner ring makes contact with the inner face of the withdrawal nut. A hydraulic nut also may be used to do this; however, the front locknut must first be removed, then the bearing tightened with a hydraulic nut. Following this, the front locknut is replaced on to the tapered adapter.
- 7. For bearing sizes 23132K to 23140K, secure the front locknut by bending a tang on the lockwasher into the closest notch on the locknut. For bearing sizes 23144K and larger, secure the front locknut by fixing the lockplate into the closest notch on the locknut.
- 8. Tighten the housed unit mounting bolts.

Fig. 1. Use Washers And Full Shims.

CROSS-SECTIONAL VIEW OF BEARINGS

Fig. 2. Cross-sectional view of bearing sizes 23132K to 23140K

Fig. 3. Cross-sectional view of bearing sizes 23144K and larger

TABLE 3. INSTALLATION DATA

Shaft Diameter	Bearing Part No.	Max. Speed (O-Seals)	Adapter Thread Spec.	Recommended Shaft Tolerance	Withdrawal Nut Initial Setting	Withdrawal nut adjustment based on a ¼ turn ⁽²⁾
mm in.		RPM		mm in.	mm in.	mm in.
135, 140 5 ¾, 5 ‰, 5 ½	23132K	500	M160 x 3	+0.00 / -0.125 +0.000 / -0.005	5.17 0.203	0.063 0.0025
150 5 ¹³ ⁄16, 5 ⁷ ⁄8, 5 ¹⁵ ⁄16, 6	23134K	470	M170 x 3	+0.00 / -0.125 +0.000 / -0.005	-1.05 -0.042	0.063 0.0025
160 6 5%6, 6 3%, 6 7%6, 6 ½	23136K	430	M180 x 3	+0.00 / -0.125 +0.000 / -0.005	-0.31 -0.012	0.063 0.0025
170 6 ¹³ ⁄16, 6 ⁷ ⁄8, 6 ¹⁵ ⁄16, 7	23138K	400	M190 x 3	+0.00 / -0.125 +0.000 / -0.005	-1.37 -0.054	0.063 0.0025
180 7 ½, 7 ¹³ ⁄16, 7 ¼	23140K	400	M200 x 3	+0.00 / -0.125 +0.000 / -0.005	- 1.33 -0.052	0.063 0.0025
200 7 ¹³ ⁄16, 7 ⁷ ⁄8, 7 ¹⁵ ⁄16, 8	23144K	330	Tr220 x 4	+0.00 / -0.125 +0.000 / -0.005	3.07 0.121	0.083 0.0033
220 8 7/16, 8 1⁄2, 8 15⁄16, 9	23148K	310	Tr240 x 4	+0.00 / -0.152 +0.000 / -0.006	2.71 0.107	0.083 0.0033
240 9 7⁄16, 9 1⁄2	23152K	250	Tr260 x 4	+0.00 / -0.152 +0.000 / -0.006	2.65 0.104	0.083 0.0033
260 9 ¹⁵ ‰, 10, 10 ⁷ ‰, 10 ¹ ⁄ ₂	23156K	240	Tr280 x 4	+0.00 / -0.178 +0.000 / -0.007	2.58 0.101	0.083 0.0033
280 10 ¹⁵ ⁄16, 11	23160K	210	Tr300 x 4	+0.00 / -0.178 +0.000 / -0.007	0.48 0.019	0.083 0.0033
300 11 ⁷ /16, 11 ¹ ⁄2, 11 ¹⁵ /16, 12	23164K	190	Tr320 x 5	+0.00 / -0.178 +0.000 / -0.007	0.30 0.012	0.104 0.0041
320 12 ½6, 12 ½	23168K	180	Tr340 x 5	+0.00 / -0.203 +0.000 / -0.008	0.34 0.013	0.104 0.0041
340 12 ¹⁵ ⁄16, 13, 13 ½	23172K	170	Tr360 x 5	+0.00 / -0.203 +0.000 / -0.008	0.09 0.003	0.104 0.0041
360 13 ¹⁵ ⁄16, 14	23176K	160	Tr380 x 5	+0.00 / -0.203 +0.000 / -0.008	0.00 0.00	0.104 0.0041
380 14 15∕16, 15	23180K	150	Tr400 x 5	+0.00 / -0.203 +0.000 / -0.008	0.00 0.00	0.104 0.0041

⁽¹⁾Housed units with bearing part no. 23132K to 23140K use lockwashers (Figure 2). Housed units with bearing part no. 23144K and larger use lockplates (Figure 3).

(2) Calculation would be: Adjustment turns = (0.25 x (nominal shaft size – measured shaft size)) / Withdrawal nut adjustment value from table.

For example, if the shaft is undersized by 0.001 in., you would back off the withdrawal nut by 1/10 of a turn (or 36 degrees), as shown by the following calculation.

If you have a 5 % in. shaft that is undersized by 0.001 in. (0.25 x (5.4375 in. – 5.4365 in.)) / 0.0025 in.) = 0.1 turns = % of a turn.

Or in degrees, this would be 360 degrees/10 = 36 degrees.

COVER INSTALLATION

- 1. Make sure the mating surface of the cover and retaining nuts are clean and dry.
- 2. Steel cover: place a 3-6 mm ($\frac{1}{4} \frac{1}{4}$ in.) bead of silicone adhesive sealant on the mating surface of the cover.
- 3. Align the cover mounting holes with the mounting holes on the retaining housing nut (make sure that the grease fitting on the cover is accessible when doing so).
- 4. Apply and tighten the cover mounting hardware.

TAA/DAA BEARING REMOVAL

- 1. Remove covers, if applicable, by removing cover hardware and disengaging the cover from the housed unit retaining nut.
- 2. Disengage locknut retainer on lockwasher on both front and withdrawal locknuts.
- 3. Remove front locknut
- 4. Tighten withdrawal nut to disengage bearing from adapter sleeve.
- 5. Slide off bearing, then slide off adapter sleeve.

RELUBRICATION

This information is to aid in the proper lubrication of Timken spherical roller bearing solid-block housed units for the majority of applications.

Housed units have been factory-prelubricated with an NLGI No. 2 lithium-complex, extreme-pressure synthetic grease that combines the benefits of wide operating temperatures and broad compatibility with varied materials. This grease offers excellent thermal stability through temperatures ranging from -40° C to 177° C (-40° F to 350° F). Housed units should be relubricated with this grease or one that is compatible and made for roller bearings. It is vital that the greases used are compatible with the factory installed grease. Please consult with your Timken engineer for the grease specifications if the use of a grease other than the grease mentioned above is needed.

Normal service is considered as operation in a clean, dry environment at temperatures between -34° C to +82° C (-30° F to +180° F). If service is beyond normal conditions due to speed, temperature or exposure to moisture, dirt or corrosive chemicals, periodic relubrication may be necessary. For extreme conditions or conditions in which special chemicals are used, consult with your Timken engineer.

After extended storage or periods when the housed unit is not in operation, fresh grease should be added.

It's important to have the right amount of lubrication because it affects the housed unit bearing operating temperature as well. An inadequate amount of grease could lead to higher operating temperatures due to inadequate lubrication film thickness. Excessive grease will lead to higher operating temperatures due to grease churning, which can cause bearing overheating. It is best to observe the bearing and its temperature and adjust the lubrication as needed. If necessary, use the purge valve or seals that purge to reduce the amount of grease.

NOTE

Please check with the manufacturer of your grease delivery system for specific information.

			Relubrication Interval (Hours of Service based on RPM and Temperatur										erature c	ure deg. F)				
Shaft Dia	Bearing Part No	Initial Weight	Relubrication	100	RPM	250 RPM		500 RPM		1000 RPM		2000 RPM		3000 RPM				
Dia.	Tarrivo.	Weight	weight	<160°	>160°	<160°	>160°	<160°	>160°	<160°	>160°	<160°	>160°	<160°	>160°			
mm in.		g oz.	g 0Z.															
40 1 ^{7/} 16, 1 ^{1/} 2	22209	19.8 0.7	5.7 0.2	2000	1000	1200	600	800	400	320	160	160	80	80	40			
45 1 ^{11/} 16, 1 ^{3/} 4	22210	22.7 0.8	5.7 0.7	1600	800	1000	500	640	320	240	120	120	60	60	30			
50 1 ¹⁵ ⁄16, 2	22211	28.4 1.0	8.5 0.3	1200	600	800	400	440	220	160	80	100	50	60	30			
55 -	22212	34.0 1.2	8.5 0.3	1150	580	750	380	400	200	140	70	90	50	50	20			
60 2 3⁄16, 2 1⁄4	22213	39.7 1.4	11.3 0.4	1120	560	720	360	360	180	120	60	80	40	40	20			
65 2 ⁷ ⁄ ₁₆ , 2 ¹ ⁄ ₂	22215	76.5 2.7	19.8 0.7	1040	520	680	340	340	170	100	50	60	30	-				
70 2 ¹¹ /16, 2 ³ /4	22216	76.5 2.7	19.8 0.7	1040	520	680	340	340	170	10	50	60	30	-				
75 2 ¹⁵ ⁄16, 3	22217	96.4 3.4	25.5 0.9	1000	500	640	320	320	160	100	50	60	30					
80 3 ³ ⁄16, 3 ¹ ⁄4	22218	104.9 3.7	25.5 0.9	960	480	600	300	300	150	80	40	40	20					
85	22219	104.9 3.7	25.5 0.9	960	480	600	300	300	150	80	40	40	20					
90 3 ⁷ ⁄16, 3 ¹ ⁄2	22220	184.3 6.5	45.4 1.6	840	420	520	260	240	120	60	30							
100 3 ¹⁵ ⁄16, 4	22222	209.8 7.4	53.9 1.9	680	340	440	220	200	100	60	30							
110 4 ³ ⁄16, 4 ¹ ⁄4	22224	260.8 9.2	68.0 2.4	640	320	400	200	180	90	50	25							
115 4 ⁷ ⁄ ₁₆ , 4 ¹ ⁄ ₂	22226	340.2 12.0	85.0 3.0	600	300	360	180	160	80	40	20							
125 4 ¹⁵ ⁄16, 5	22228	396.9 14.0	99.2 3.5	520	260	340	170	140	75				Contiue	ed on ne	ext page			

TABLE 4. RELUBRICATION INTERVALS

0 1 <i>6</i>	_ ·			Relubrication Interval (Hours of Service based on RPM and									nd Temperature deg. F)					
Shaft Dia	Bearing Part No	Initial Weight	Weight	100 RPM		250 RPM		500 RPM		1000 RPM		2000 RPM		3000 RPM				
Dia.	T untitio.	Worght	Worght	<160°	>160°	<160°	>160°	<160°	>160°	<160°	>160°	<160°	>160°	<160°	>160°			
mm in.		g 0Z.	g 0Z.															
135, 140 5 ¾, 5 ¼6, 5 ½	23132	593 20.9	116 4.1	480	240	320	160	120	60									
150 5 ¹³ ⁄16, 5 ⁷ ⁄8, 5 ¹⁵ ⁄16, 6	23134	646 22.8	122 4.3	420	200	280	140	110	60									
160 6 5⁄16, 6 3⁄8, 6 7⁄16, 6 1⁄2	23136	803 28.3	145 5.1	400	180	240	120											
170 6 ¹³ ⁄16, 6 ⁷ ⁄8, 6 ¹⁵ ⁄16, 7	23138	956 33.7	167 5.9	380	160	200	110											
180 7 ½, 7 ¾6, 7 ¼	23140	1202 42.4	190 6.7	350	150	150	90											
200 7 ¹³ ⁄16, 7 ⁷ ⁄8, 7 ¹⁵ ⁄16, 8	23144	1474 52.0	221 7.8	320	140	110	60											
220 8 ⁷ /16, 8 ¹ /2, 8 ¹⁵ /16, 9	23148	1942 68.5	255 9.0	290	130	85	45											
240 9 ½16, 9 ½	23152	2415 85.2	318 11.2	260	120	60	30											
260 9 ¹⁵ ⁄16, 10, 10 ⁷ ⁄16, 10 ¹ ⁄2	23156	2745 96.8	335 11.8	230	110													
280 10 ¹⁵ ⁄16, 11	23160	3202 113.0	400 14.1	200	100													
300 11 ½, 11 ½, 11 %, 12	23164	4112 145.0	476 16.8	170	90													
320 12 ½6, 12 ½	23168	5093 179.7	550 19.4	140	80													
340 12 ¹⁵ ⁄16, 13, 13 ⁷ ⁄16, 13 ¹ ⁄2	23172	5315 187.5	576 20.3	110	60													
360 13 ¹⁵ ⁄16, 14	23176	5725 201.9	601 21.2	85	45													
380 14 ¹⁵ ⁄16, 15	23180	6466 228.1	649 22.9	60	30													

DISCLAIMER

Every reasonable effort has been made to ensure the accuracy of the information in this writing, but no liability is accepted for errors, omissions or for any other reason.

RELUBRICATION

Adequate lubrication is an essential element to the housed unit bearing life. Use table 4 as a suggested initial point of reference. Relubrication frequency and quantity intervals are best determined through experience for each application based on types of service, which may differ from the suggestions in the table.

When the housed unit is not in operation for an extended period of time, grease should be added to prevent corrosion.

Table 4 shows general lubrication suggested starting points only. Please read the entire installation instructions prior to using these tables. Applications should be regularly reviewed and lubrication amounts and intervals modified as needed to ensure the best results.

HOW TO CONVERT A SOLID-BLOCK HOUSED UNIT FROM FIXED TO EXPANSION (FLOATING)

Flange Cartridge and Flange Block

- Make a reference mark on the housing and retaining nut.
- Loosen the Teflon-tipped set screw that locks the retaining nut in place.
- Loosen the retaining nut by tapping it with a hammer and punch, rotating the retaining nut counterclockwise one complete revolution.
- Tighten the Teflon-tipped set screw.

NOTE

When converting a solid-block housed unit bearing from fixed to expansion, it is imperative that the unit that is going to be converted is correctly oriented. Since the insert in a steel housed unit flange bearing

is held against either a shoulder or snap ring opposite the housing retaining nut, a flange bearing that has been converted to expansion can only float in the direction of the retaining nut. Based on this, the retaining nut must be on the side of the housing opposite the fixed bearing.

DISCLAIMER

Every reasonable effort has been made to ensure the accuracy of the information in this writing, but no liability is accepted for errors, omissions or for any other reason.

Pillow Block

- Decide the amount and direction of expansion that's needed. If unidirectional expansion is required, follow the directions outlined above for flange bearings on the nut that is on the side you want the expansion.
- If multi-directional expansion is required, follow the directions above for both nuts on flange housed units.

HOW TO CONVERT A SOLID-BLOCK HOUSED UNIT FROM EXPANSION (FLOATING) TO FIXED

Flange Cartridge and Flange Block

- Loosen the Teflon-tipped set screw that locks the retaining nut in place.
- Tighten the retaining nut by tapping it with a hammer and punch, rotating the retaining nut clockwise until tight. It is not possible to overtighten the retaining nut.
- Tighten the Teflon-tipped set screw.

Pillow Block

• Follow the directions above for flange bearings on both nuts on either side of the housing.

NOTE

When converting a solid-block housed unit from expansion to fixed on a mounted bearing, the locking-collar set screws must be released to allow the insert to move both in the housing and on the shaft.

<u>/</u> WARNING

Failure to observe the following warnings could create a risk of death or serious injury.

Proper maintenance and handling practices are critical. Always follow installation instructions and maintain proper lubrication.

Overheated bearings can ignite explosive atmospheres. Special care must be taken to properly select, install, maintain and lubricate housed unit bearings that are used in or near atmospheres that may contain explosive levels of combustible gases or accumulations of dust such as grain, coal, or other combustible materials. Consult your equipment designer or supplier for installation and maintenance instructions.

If hammer and bar are used for installation or removal of a part, use a mild steel bar (e.g., 1010 or 1020 grade). Mild steel bars are less likely to cause release of high speed fragments from the hammer or bar or the part being installed or removed.

CAUTION Failure to follow these cautions may result in property damage.

Do not use damaged housed units.

The Timken team applies their know-how to improve the reliability and performance of machinery in diverse markets worldwide. The company designs, makes and markets bearings, gear drives, automated lubrication systems, belts, brakes, clutches, chain, couplings, linear motion products and related power transmission rebuild and repair services.